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1. Introduction

It has been found in radiative-convective equilib-
rium (RCE) simulations that when certain conditions 
are met, a random ensemble of convective clouds 
become localized or aggregate into a single cluster, a 
phenomenon that is known now as convective self- 

aggregation (Held et al. 1993; Tompkins 2001; Breth-
erton et al. 2005). Self-aggregation proceeds with a 
dramatic change in the thermodynamic fields consist-
ing of an expanding dry area with few cold clouds and 
a moist precipitating area being increasingly confined 
into a smaller domain. These processes, characteristic 
of convective self-aggregation, are explained in terms 
of various physical feedbacks. Bretherton et al. (2005) 
found that convective-water-vapor-radiation feedbacks 
are important for the progression of convective self- 
aggregation. Cloud radiative effects are another key 
factor for self-aggregation owing to the shallow 
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Abstract

A new observational measure, the Morphological Index of Convective Aggregation (MICA), is developed to 
objectively detect the signs of convective self-aggregation on the basis of a simple morphological diagnosis of 
convective clouds in satellite imagery. The proposed index is applied to infrared imagery from the Meteosat-7 
satellite and is assessed with sounding-array measurements in the tropics from Cooperative Indian Ocean Experi-
ment on Intraseasonal Variability in the Year 2011 (CINDY2011)/Dynamics of the Madden Julian Oscillation (MJO) 
(DYNAMO)/Atmospheric Radiation Measurement (ARM) MJO Investigation Experiment (AMIE). The precipita-
tion events during the observational period are first classified by MICA into “aggregation events” and “nonaggre-
gation events”. The large-scale thermodynamics implied from the sounding-array data are then examined, with a 
focus on the difference between the two classes. The composite time series show that drying proceeds over 6 – 12 
h as precipitation intensifies in the aggregation events. Such drying is unclear in the nonaggregation events. The 
moisture budget balance is maintained in very different manners between the two adjacent sounding arrays for 
the aggregation events, in contrast to the nonaggregation events that lack such apparent asymmetry. These results 
imply the potential utility of the proposed metrics for future studies in search of convective self-aggregation in 
the real atmosphere. 
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circulation caused by radiation cooling at the top of 
clouds, as demonstrated with a cloud-resolving model 
(Muller and Held 2012) and a general circulation 
model (Coppin and Bony 2015). Wing and Emanuel 
(2014) and Wing et al. (2017) quantitatively evaluated 
the physical mechanism of self-aggregation and found 
that the feedbacks among shortwave radiation, long-
wave radiation, and surface fluxes play an important 
role, and the energy convergence due to horizontal 
transport strongly acts as positive feedback during 
the intermediate stages of the aggregation process. In 
order to investigate the validity of idealized simula-
tions of self-aggregation, Holloway (2017) performed 
a set of sensitivity experiments with a realistic config-
uration to compare with idealized simulations. They 
confirmed that the aggregation mechanisms, as identi-
fied in the idealized simulations, are overall useful for 
analyzing the real atmosphere as well.

The signs of convective self-aggregation have been 
searched for also in observations. Tobin et al. (2012, 
2013) studied the dependence of tropospheric relative 
humidity and outgoing longwave radiation on the 
degree of convective aggregation in satellite observa-
tions and found that those features are consistent with 
the results from existing numerical simulations, as 
reviewed above. Stein et al. (2017), investigating the 
observed relationship between convective aggregation 
and the vertical structure of clouds, discovered sys-
tematic behaviors in support of some known aspects 
of convective self-aggregation.

However, the observational evidence for convective 
self-aggregation is limited, and it remains unclear to 
what extent the known aspects of convective self-ag-
gregation, as identified by idealized simulations, are 
relevant to the real atmosphere (Holloway et al. 2017). 
In this study, we develop a new observational measure 
to detect convective self-aggregation in satellite infra-
red imagery and apply it to a case study with sound-
ing-array observations in the tropics for assessing the 
potential utility of the proposed method.

The data and analysis framework used to conduct 
the study is described in Section 2. In Section 3, a 
new analysis method is proposed to detect the pos-
sible signs of convective aggregation from satellite 
snapshots. The results are presented in Section 4 and 
discussed further in Section 5. A summary is given in 
Section 6.

2. Data sources

The datasets are outlined in this section.

2.1  Geostationary meteorological satellite  
measurements

In order to track the temporal variability of convec-
tive clouds, the brightness temperature dataset from the  
Meteosat-7 Channel 8 (10.5 – 12.5 µm) measure ments 
is analyzed. Meteosat-7 is a European meteorological 
satellite that was launched to fly over 0° in longitude 
in 1997 but was moved to 57.5°E in 2006. From July 
2006 until March 2017, Meteosat-7 has been operated 
to acquire data capturing the entire Indian Ocean 
(25 – 115°E, 45°S – 45°N). The current target area is 
72 – 81°E and 8°S – 7°N, a domain just covering the in 
situ observational area described below, with a 30 min 
temporal resolution and 0.045° × 0.045° spatial reso-
lution. In this study, convective clouds are identified 
by a constant threshold applied to infrared brightness 
temperature. The threshold value is chosen, according 
to the previous studies (e.g., Maddox 1980; Roca and 
Ramanathan 2000), to be 240 K. 

2.2 Sounding observations
The atmospheric thermodynamic field is analyzed 

using the radiosonde observation network from the 
Cooperative Indian Ocean Experiment on Intrase-
asonal Variability in the Year 2011 (CINDY2011)/
Dynamics of the Madden Julian Oscillation (MJO) 
(DYNAMO)/Atmospheric Radiation Measurement 
(ARM) MJO Investigation Experiment (AMIE) 
(Yoneyama et al. 2013). This field campaign was car-
ried out in the Indian Ocean region near the equator 
during the period from late 2011 to early 2012. The 
observational stations were deployed to form two 
sounding networks straddling the equator, that is, 
the northern sounding array (NSA) and the southern 
sounding array (SSA), comprised of six sounding 
stations (see Fig. 1, top). In this study, we used the 
Colorado State University (CSU) array-averaged 
(i.e., averaging from the soundings consisting of 
each array) analysis product version 3a (Johnson and 
Ciesielski 2013) and the area-averaged precipitation 
of TRMM 3B42v7 product, with averaging applied to 
all quarter-degree grid boxes within each array. Repre-
sentativeness issues potentially arising from sporadic 
station samples will be briefly discussed in Section 
5. The column radiative heating stored in the CSU 
DYNAMO product is originally taken from the Clouds  
and the Earth’s Radiant Energy System (CERES) 
data product. In this analysis, precipitation, water- 
vapor mixing ratio, radiative heating, and moisture 
budget parameters (the vertically integrated moisture 
tendency, horizontal advection, vertical advection, 
and budget-derived rainfall) are used from the CSU 
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DYNAMO product. The analysis period is three 
months, from October 1, 2011, to December 31, 2011, 
and the observational time interval is 3 h. 

3. Analysis framework

Tobin et al. (2012, 2013) devised the Simple Con-

vective Aggregation Index (SCAI) as an indicator of 
aggregation, which is a parameter that combines the 
number of cloud clusters (N ) and the mean distance 
between the clusters (D0): 

Fig. 1. Top. Snapshot of brightness temperature from Meteosat-7 infrared data at 0000 UTC 2 Oct 2011. The 
rectangular area indicates the analysis domain of this study with the DYNAMO/CINDY2011/AMIE sounding 
arrays also shown. The right figure is an enlarged view of the analysis region. The hatched area shows the con-
vective area and the nonhatched area shows the clear-sky area. Bottom. Four example snapshots: (a) 0200 UTC 
20 Oct 2011, MICA = 0.00238, SCAI = 13.6; (b) 0200 UTC 13 Oct 2011, MICA = 0.0555, SCAI = 7.72; (c) 
0200 UTC 6 Oct 2011, MICA = 0.215, SCAI = 0.872; (d) 0100 UTC 8 Oct 2011, MICA = 0.212, SCAI = 0.251.
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Here, Nmax is the maximum possible number or half 
the total number of pixels occupying the study area 
and L is the length scale of this area. SCAI shows 
the degree of disaggregation; that is, SCAI is smaller 
where cloud clusters are more aggregated. However, 
as Tobin et al. (2012) pointed out, SCAI by design 
requires multiple cloud clusters to exist in the ob-
served region, and SCAI is ill-defined in cases where 
the number of cloud clusters is 0 or 1 since N = 0 and  
D0 = 0, respectively. In addition, SCAI is practically a 
measure of the number of cloud clusters, as confirmed 
later, and does not explicitly reflect the areal extent of 
clear sky, which is one of the remarkable features of 
self-aggregation. The predominance of clear sky in an 
aggregated state is not directly considered for other 
proposed metrics of the degree of convective aggrega-
tion either, including the organization index (Tompkins 
and Semie 2017) and the convective organization 
potential (COP) (White et al. 2018). In this study, we 
devised a new index of convective self-aggregation, 
with these issues taken into account. 

3.1  Morphological Index of Convective Aggregation 
(MICA)

In this study, the following equation is proposed as 
an index for the degree of self-aggregation:

MICA
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obs cls
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=
∑

×
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Here, Aobs is the total observed area, Acls is the area 
enclosed by the smallest possible rectangle that can be 
drawn around all cloud clusters in the domain, and Sc, i  
is the area of the i th cloud cluster or the contiguous 
area with infrared brightness temperatures below 
240 K. This nondimensional index, hereafter called 
the Morphological Index of Convective Aggregation 
(MICA), is intended to measure the degree of convec-
tive aggregation, with a higher value representing a 
higher degree of aggregation. As reviewed in Section 
1, convective self-aggregation proceeds as convective 
clouds aggregate into a limited number of large cloud 
clusters in a small confined area, while the clear-sky 
area expands further. Therefore, in MICA, the degree 
of aggregation is quantitatively evaluated by how 

densely cloud clusters are aggregated into a confined 
area (å i Sc, i /Acls) and, at the same time, by how much 
area the clear sky outside the aggregated convective 
area occupies relative to the whole observed domain 
([Aobs - Acls] /Aobs). Both of these elements increase as 
the aggregation proceeds, and indeed MICA exhibits a 
large value indicative of convective aggregation only 
when these two parameters show high values simul-
taneously. Otherwise, MICA stays minimal, with the 
result of either of these factors being small.

In order to visually demonstrate the performance of 
MICA, MICA is applied to selected convective events 
in Fig. 1 (top). The observational domain (Aobs ) is a 
rectangle of 9° × 15° or roughly 1,000 km × 1,700 
km in size, which is comparable to or larger than the 
computational domain typical of RCE simulations 
conducted in existing convective aggregation studies. 
In this particular example, Acls is represented by a 
hatched square, which is confined to the lower half 
of the observed domain (considered as an aggregated 
state). Figure 1 (bottom) shows the results of MICA 
and SCAI applied to a few cases with different cloud 
distributions. When convective clouds are sporadic 
across the whole area (Fig. 1a), MICA becomes small 
(a, MICA = 0.00238) supposedly owing to the large 
Acls expected from the widely spread cloud clusters. 
In this case, SCAI is as high as 13.6, which implies a 
disaggregated state as well. As aggregation progresses 
(Figs. 1b, c), MICA turns out to be a large value  
(b, MICA = 0.0555, SCAI = 7.72; c, MICA = 0.215, 
SCAI = 0.872). These examples demonstrate that 
MICA can characterize the clumping state of cloud 
clusters as SCAI does. However, MICA does not 
work as intended in cases where there is one cloud 
cluster covering the whole area, or in other extreme 
cases where a few small cloud clusters happen to be 
found in one corner of the observed domain that is 
otherwise clear (as in Fig. 1d). In the former case, 
MICA becomes 0 because a clear-sky area is required 
by MICA to always accompany aggregation. If the 
observed region is set to be sufficiently large, how-
ever, such situations can be practically eliminated. In 
the latter case, the index value increases for a false 
reason (d, MICA = 0.212, SCAI = 0.251), making it 
impossible to distinguish from the bona fide aggrega-
tion. Although this case is rather rare, it is difficult to 
exclude mechanically from MICA only. MICA will 
not work properly either when an “outlier” exists in 
the farthest corner of the domain from the main group  
of clumped clusters, in which case [Aobs - Acls] /Aobs 
would be nearly 0 for a potentially aggregated state. 
For these reasons, it is necessary to omit the cases 
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where the cloud amount in the observational region 
is extremely close to 0 or 1, and it is desirable as well 
to use independent quantities such as precipitation or 
cloud coverage together with MICA as a reference 
to avoid erroneous estimates. Unlike SCAI, MICA 
does not evaluate the randomness of convective dis-
tribution, but MICA has a unique advantage of fully 
exploiting the morphological properties of satellite 
infrared imagery including nonprecipitation regions.

3.2 Compositing analysis
In order to investigate the temporal variability of 

MICA and meteorological parameters associated 
with the possible occurrence of convective self- 
aggregation, a composite analysis is performed in 
the manner described as follows. Figure 2 shows the 
complete time series of the array-averaged rainfall 

from the TRMM 3B42v7 product, MICA, SCAI, and 
the number of convective clusters for a three-month 
period. MICA is plotted upside down so it compares 
directly with SCAI, with the downward direction indi-
cating a higher degree of aggregation. While SCAI is 
clearly influenced by three MJO episodes (Yoneyama 
et al. 2013), MICA exhibits no sign of intraseasonal 
modulation because the clear-sky term, considered 
as a signal of aggregation in MICA, stays very small 
within MJO convective envelopes. Nevertheless, 
MICA and SCAI overall agree in that convective 
aggregation tends to proceed in early October, 
early December, and late December, all during the 
inactive phases of the MJO. On the other hand, only 
SCAI finds spells of aggregation in early and middle  
November. This discrepancy is practically insignif-
icant because these periods do not contain major 

Fig. 2. Time series of (a) DYNAMO/CINDY2011/AMIE averaged rainfall over the total NSA + SSA domain (black), 
(b) aggregation index MICA (black, labeled on the left) and SCAI (gray, labeled on the right) with MICA plot-
ted upside down, and (c) the number of convective clusters for the same region. The light-blue line and orange 
line indicate DYNAMO NSA-averaged precipitation and DYNAMO SSA-averaged precipitation, respectively. 
The arrows in (a) show the aggregation (red) and nonaggregation (blue) events, classified according to the 
method described in Section 3.
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precipitation events in any case (Fig. 2a). Figures 2b 
and 2c show that SCAI closely traces the number of 
cloud clusters as expected from the way it is defined 
(Tobin et al. 2012). Figure 3 shows the relationship 
between MICA/SCAI and the array-averaged column 
water-vapor mixing ratio during the whole observa-
tion period. This provides evidence that MICA and 
SCAI each suggest a negative correlation between 
moisture and the degree of aggregation (recall that 
SCAI decreases as aggregation advances) as known 
from previous studies, although the spread is so large 
that the systematic correlation is marginal.

The ± 24 h time sequence is sampled around each 
precipitation peak (time = 0) on the basis of MICA 
and then classified as either “aggregation events” or 
“nonaggregation events”. It is noted that this nomen-
clature remains tentative until MICA is proven firmly 
in future investigations to be a reliable measure of 
self-aggregation as known from the literature. The 
extracted time series are composited into a statistical 
time series representing each of the aggregation and 
nonaggregation events. Here, the aggregation events 
are defined at the precipitation peak when MICA ≥ 
0.1 and precipitation ≥ 5 mm day−1 (red arrows in Fig. 
2a), and the nonaggregation events are identified with 
MICA < 0.1 and precipitation ≥ 5 mm day−1 (blue 
arrows in Fig. 2a). The precipitation peaks are first 
sought individually in the NSA- and SSA-averaged 
rainfall, and if multiple peaks from either array are 
present within consecutive ± 24 h, only the highest 
among them is selected. Precipitation peaks lower 
than 5 mm day−1 are not used for the composite anal-
ysis. We repeated the analysis by changing the thresh-
old definitions within a plausible range and confirmed 
that it does not qualitatively affect the subsequent dis-
cussions (not shown). By this method, 9 aggregation 
events and 17 nonaggregation events are obtained.

Figure 4 shows snapshots of all the extracted aggre-
gation events at the hour of peak precipitation. These 
snapshots show that major, if not whole, portions of 
aggregated clouds and the surrounding clear-sky areas 
are overall captured by the sounding arrays, giving 
credibility to the thermodynamic budget analysis pre-
sented later at least around the time of peak activity. It 
is not ensured, however, whether the same argument 
holds over an extended period of time because con-
vective systems often move into and out of the study 
domain as they develop and dissipate on their own. 
Cloud clusters traversing the domain could introduce 
misleading signals in the statistics, although the key 
physical signatures intrinsic to the convective dynam-
ics would not be entirely lost by including propagating 
convective systems together in the composite (Masu-
naga 2015).

It may be noteworthy that the aggregation events 
identified in this work prefer relatively quiescent 
periods not heavily disturbed by frequent intrusions 
of cloud clusters. While systematic zonal propagation 
of disturbances into the study domain is evident 
during three MJO passages as noted earlier (Fig. 5a), 
such extensive zonal propagation is less clear outside 
the MJO convective envelopes. No clear signal of 
meridional propagation is found at any time (Fig. 5b). 
With the exception of the November 9th event, which 
probably belongs to a propagating system, most of the 
convective events outside the active MJO phase are 
unlikely to be totally aliased by external disturbances 
that accidentally traverse the study domain. Given that 
the aggregation events detected in the study are mostly 
outside the active phases of MJO (Fig. 2a), it would 
not be very likely that convective aggregation as dis-
cussed here is heavily affected by advection from the 
neighboring regions. With that being said, the possible 
effects of propagating systems on the interpretation 

Fig. 3. Scatter diagram of the relationship between the aggregation index (left: MICA; right: SCAI) and column 
water vapor. 
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of MICA are not fully sorted out by the present ob-
servations alone and have yet to be examined further 
elsewhere.

4. Results

Figure 6a shows the composite time series of MICA 
for the aggregation events (red line) and for the non-
aggregation events (blue line). For the aggregation 
events, a conspicuous increase in MICA is observed 
toward the hours of peak precipitation, with the ampli-
tude ranging over an order of magnitude from 0.01 to 
above 0.1. For the nonaggregated precipitation event, 
on the other hand, MICA stays small by definition. 
This confirms that the aggregation events are isolated 

from the nonaggregation events as effectively as 
intended. It is noted that the variation of MICA for the  
aggregation events is confined within ± 12 h around 
the precipitation peak time (at 0 h). This time scale 
may be set either by a local development of convec-
tive systems or by propagating systems entering and 
leaving the study domain, so it is unclear for the 
moment whether it physically represents the aggrega-
tion processes. If this time scale is actually relevant  
to the aggregation in nature, it contrasts with the 
previous studies based on numerical simulations, 
where convective self-aggregation makes progress 
more slowly over a few weeks to several tens of days 
(Holloway et al. 2017).

Fig. 4. Snapshots of infrared brightness temperature for all nine observed aggregation events at the time of peak 
precipitation. 
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Fig. 5. (a) Time–longitude (averaged over 8°S – 7°N) and (b) time–latitude (averaged over 72 – 81°E) sections of 
infrared brightness temperature. The area bound between two white lines or 72 – 81°E in (a) and 8°S – 7°N in (b) 
indicates the observed region to define MICA. 

Fig. 6. Composite time series of (a) the aggregation index MICA, (b) DYNAMO/CINDY2011/AMIE averaged 
rainfall over the total NSA + SSA domain, (c) DYNAMO NSA-averaged precipitation, and (d) DYNAMO 
SSA-averaged precipitation for the aggregation (red line) and nonaggregation (blue line) events. The time axis 
spans 24 h before and after the time of precipitation peak at t = 0. Note that the range of precipitation varies 
among panels (b) – (d). All aggregation and nonaggregation events for (a) and (b), while aggregation events are 
sampled only from the cases where convection resides in SSA for (c) and (d). 
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In Fig. 2a, precipitation averaged within NSA (light- 
blue line) and SSA (orange line) is shown together 
with the mean of these two (black line). For the ag-
gregation events (red arrows in Fig. 2a), precipitation 
is localized in either NSA or SSA most of the time, 
whereas in the nonaggregation events (blue arrows 
in Fig. 2a), precipitation occurs simultaneously in 
both NSA and SSA in most cases. This is as expected 
from the definition of MICA, designed to embody the 
horizontal concentration of precipitation characteristic 
of self-aggregation. The domain-mean or NSA-and-
SSA-combined precipitation (Fig. 6b) shows that the 
nonaggregation events produce significantly heavier 
rainfall than the aggregation events. This contrast 
virtually reflects the MJO variability because the 
aggregation events prefer the dry phases of MJO. 
Ideally, it is desirable for a fair comparison to sample 
the aggregation and nonaggregation events that fall in 
a similar precipitation range, but this is not feasible 
for the limited samples of this work. Figures 6c and 

6d show the composite time series of precipitation 
in NSA and SSA during aggregation (red) and non-
aggregation (blue). Because precipitation is mostly 
localized in SSA (see Figs. 2a, 4), the composite 
analysis hereafter (Figs. 6c, d, 9) excludes the case 
of December 8 where precipitation dominates NSA 
for clarity of presentation. As a result, precipitation 
is virtually absent in NSA for the aggregation events, 
making a sharp contrast to the nonaggregation events  
showing a distinct peak at t = 0. The precipitation 
evolution for the nonaggregation events, though 
qualitatively similar, differs in magnitude by 50 % at 
the peak between NSA and SSA. In SSA, the rainfall 
evolves over time in a similar manner, although the 
amplitude of variability is greater in the aggregation 
events than in the nonaggregation events.

Figure 7 shows the composite time series of the 
water-vapor mixing ratio anomaly defined against the 
temporal average during ± 24 h. Figures 7a and 7c 
show NSA and SSA for the aggregation events, and 

Fig. 7. Composite time series of water-vapor mixing ratio anomaly (g kg−1) with respect to the average over 
all composite times (± 24 h) from DYNAMO NSA (a, b) and DYNAMO SSA (c, d) for the aggregation or 
nonaggregation events. For the aggregation events, only the cases where precipitation is localized in SSA are 
included in the analysis. Panels (a) and (c) use SSA only aggregation events. Panels (b) and (d) use all nonag-
gregation events.
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Figs. 7b and 7d present the two sounding arrays for 
the nonaggregation events. Nonaggregation precipita-
tion systems (Figs. 7b, d) accompany a moist anomaly 
during 12 h before the precipitation. In the aggrega-
tion events, on the contrary, a dry anomaly persists in 
the midtroposphere for 6 h before and after the precip-
itation peak in both arrays (Figs. 7a, c). Drying before  
the precipitation peak is at odds with the known char-
acteristics prior to developing precipitation in general 
(e.g., Sherwood 1999), but it does not contradict the 
expansion of the drying area accompanying convec-
tive self-aggregation. In order to investigate the poten-
tial factors responsible for the differences between the 
aggregation and nonaggregation events, we conduct a 
moisture budget analysis in the next section. 

5. Discussion

5.1  Time variation of the water vapor and radiation 
fields

The midtropospheric moisture variability was found 
to exhibit contrasting behaviors between the aggrega-
tion and nonaggregation events. The possible factors 
controlling the observed water-vapor fluctuations are 
explored in terms of the moisture budget analysis. The 
vertically integrated large-scale moisture budget is 
written as follows: 
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q is the water-vapor mixing ratio, Lv is the specific 
latent heat of vaporization, ν  is the horizontal flow, 
ω  is the vertical pressure velocity, Q2 is the apparent 
moisture sink (Yanai et al. 1973), P is precipitation, E 
is the surface evaporation rate, g is the gravitational 
acceleration, psfc is the surface pressure, and pr is the 
top of the atmosphere chosen to be 50 hPa. Each term 
of the budget formula is calculated using the array- 
averaged radiosonde observations except for the Q2 
term. Since it is difficult to directly observe Q2, it is 
calculated as the residual once the other terms are 
given.

Figure 8 shows the results of the column-integrated 
water-vapor budget analysis. As mentioned above, 
the aggregation composite consists only of the cases 

where the precipitation peak resides in SSA. In 
aggregation events, subtle drying is observed prior 
to the peak precipitation in NSA, whereas in SSA, 
notable drying spells appeared multiple times during 
the evolution. These drying events are driven mainly 
by lower- and midtropospheric variability, though not 
entirely in a coherent manner across altitudes (Fig. 7), 
which does not contradict the expansion of dry areas 
as known for the self-aggregation. The nonaggrega-
tion events experience notable moistening before t = 
0, followed by a neutral or marginally drying spell 
(Figs. 8b, d). The horizontal advection of water vapor 
has little contribution to the moisture budget in all 
cases. This is in line with a previous study analyzing 
DYNAMO datasets, showing that the horizontal ad-
vection plays only a minor role in the moisture budget 
(Ruppert and Johnson 2015). Inoue and Back (2015) 
also confirmed the smallness of horizontal moisture 
advection for a short-time variability of one to two 
days, although horizontal advection can be important 
on intraseasonal time scales. However, care must be 
taken regarding the uncertainties in the horizontal ad-
vection estimates. The horizontal moisture advection 
could be erroneous when the horizontal moisture flux 
is poorly sampled by the limited number of stations 
consisting of the DYNAMO sounding arrays (Hannah 
et al. 2016).

On the other hand, the difference is evident in the 
vertical moisture advection between the aggregation 
and nonaggregation events. In the aggregation events 
(Figs. 8a, c), the vertical moisture advection remains 
small in NSA, whereas it grows significantly in SSA, 
confirming a vigorous development of convective 
clouds only in SSA (recall that we have selected the 
cases with convection residing in SSA only). Mean-
while, in the nonaggregation events (Figs. 8b, d),  
the vertical moisture advection has considerable 
magnitude in both NSA and SSA. Moistening owing 
to vertical advection is largely counteracted by Q2 , 
leaving behind a small moisture tendency.

The vertical moisture advection term and Q2 rough-
ly counteract each other for the nonaggregation events. 
For the aggregation events in SSA, however, Q2 does 
not precisely coincide with the vertical advection, 
resulting in a moisture budget imbalance that accounts 
for the negative moisture tendency mentioned earlier. 
It is suggested that efficient precipitation for the ag-
gregation events temporarily exceeds moistening by 
vertical advection and causes drying. As such, drying 
is driven by moist convection itself for those events, 
whereas in the RCE experiments, the primary source 
of drying is the subsidence in the clear-sky region.
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To examine the budget imbalance in light of the  
satellite-observed precipitation, Figs. 9a and 9b show 
the time series of TRMM 3B42v7 precipitation and 
Q2-derived precipitation in SSA for the aggregation 
events and nonaggregation events, respectively. 
The evaporation flux required for evaluating the Q2- 
derived precipitation is taken from the Woods Hole 
Oceanographic Institution product as stored in the 
CSU DYNAMO dataset. The Q2-derived precipitation 
captures a broad enhancement of rainfall but fails 
to reproduce a sharp peak as implied by the satellite 
observations. A plausible source of this discrepancy 
arises from uncertainties in the horizontal moisture 
advection as mentioned above. If the difference in 
precipitation in Fig. 9a is due to errors in the horizon-
tal advection of water vapor, it is suggested that the 
excessive precipitation in Q2 before -12 h should be 
attributed to drying by horizontal advection, while an 
underestimated precipitation around the precipitation 

peak might imply moistening by horizontal advection, 
respectively. Although it is difficult to conclude that 
with confidence from the present data, the evolution 
of the aggregated events may be associated with mois-
ture import to or moisture export from the precipitat-
ing atmospheric column, which is worthy of a future 
investigation in light of the similar dynamic processes 
known for convective self-aggregation. Figures 9c 
and 9d show the composite time series of radiative 
heating rates for each sounding array. The striking 
enhancement of radiative heating (or suppressed cool-
ing) around t = 0 for aggregation events is explained 
presumably by the greenhouse effect of high clouds 
developing as precipitation intensifies. It may be 
aliased by the diurnal cycle of shortwave heating to 
some degree, but not entirely because the aggregation 
events currently sampled are not synchronized in 
local time and would not provide a clear t = 0 peak 
as observed by the diurnal solar cycle alone. The non-

Fig. 8. Composite time series of vertically integrated moisture budget parameters (W m−2) from DYNAMO NSA 
(a, b) and DYNAMO SSA (c, d) for the aggregation or nonaggregation event. Budget terms are calculated as 
shown in Section 5, with the Eulerian tendency (black), horizontal advection (yellow), vertical advection (red), 
and apparent sources (green). Panels (a) and (c) use SSA only aggregation events. Panels (b) and (d) use all 
nonaggregation events.

<dq/dt>

-<udq/dp>
-<wdq/dp>

-<Q2>
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aggregation events experience a similar variability of 
radiative heating, whereas the amplitude of variability 
is relatively modest. 

5.2  Do these observations show signs of convective 
self-aggregation?

The aspects of the aggregation events extracted 
from the present analysis resemble the known char-
acteristics from past numerical studies, including the 
growth of dry areas in the vicinity of intensifying 
convection and the resulting enhancement of radiative 
cooling. On the other hand, dissimilarities are also 
evident, such as the absence of notable subsidence in 
the current observations, since the vertical moisture 
advection does not imply significant drying in the 
nonprecipitating domain (Fig. 8a). Convective events 
analyzed in this work are rather limited in number, 
making it impossible to subsample the data by, for 
instance, precipitation regimes as done by Tobin et al. 

(2012) for a robust interpretation of the results. It 
is discussed in this section whether the signs of the 
self-aggregation, as suggested by MICA, are relevant 
to what we know from the literature, particularly in 
the contexts of the MJO and of the aggregation time 
scales. 

A vast majority of the aggregation events identified 
in the current observations occur in the absence of 
MJO convection, whereas precipitation peaks during 
active MJO phases are mostly classified as nonaggre-
gation events. A possible explanation for this is that 
convective aggregation favors a relatively quiescent 
environment presumably because an intrusion of syn-
optic-scale disturbances would destroy the large-scale 
thermodynamic balance required to keep the aggrega-
tion in progress (e.g., Wing and Emanuel 2014). In a 
real atmosphere being constantly disturbed by external 
dynamic forcing, convective aggregation is unlikely 
to proceed over an extended period of time as in ide-

TRMM rain
Q2-derived rain

NSA
SSA

Fig. 9. Composite time series of (a, b) DYNAMO SSA-averaged rainfall (mm day−1) from TRMM 3B42v7 
product (solid line) and Q2-budget-derived value (dash-dotted line). (c, d) Column net radiation (W m−2) from 
DYNAMO/CINDY2011/AMIE observation region (breakdown in NSA and SSA) for the aggregation or nonag-
gregation events. Panels (a) and (c) use SSA only aggregation events. Panels (b) and (d) use all nonaggregation 
events.
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alized simulations (e.g., Bretherton et al. 2005). The 
current finding is at odds with the existing hypothesis 
that the convective envelope of the MJO may be a 
manifestation of self-aggregation (Arnold and Randall 
2015; see also Holloway et al. 2017). This hypothesis 
is not necessarily supported by a broad consensus (e.g., 
Mapes 2016) and has yet to be tested further.

The observed aggregation events evolve over a 
time scale of about 24 h, which is not surprising given 
that tropical cloud clusters often have a lifetime of 
one to two days (Nakazawa 1988). This time scale, 
however, is substantially shorter than typically seen 
in RCE simulations of convective self-aggregation 
(Holloway et al. 2017). The time scale difference is 
partly due to the fixed spatial scale imposed by the 
DYNAMO sounding arrays, which may introduce a 
certain temporal scale of artificial origin. This also 
explains why the observed aggregation events are 
disaggregated as quickly while the aggregated state in 
RCE simulations lasts much longer. Another plausible 
reason for this discrepancy arises because incessantly 
disturbed environments hinder the sustainable devel-
opment of aggregation as mentioned above. Idealized 
simulations carried out for studying convective aggre-
gation are typically initialized with a homogeneous 
RCE state, which may inevitably require tens of days 
until the whole domain is “disturbed” as normally 
observed in the real atmosphere. The third possibility 
is that numerical models might not properly simulate 
physical elements crucial for the rapid evolution of 
convective aggregation, including, for example, the 
congestus-mode dynamics fed by cirrus radiative 
effects (Masunaga and Bony 2018). These issues are 
largely speculative at this point and are left for future 
investigations to seek further evidence. 

6. Conclusion

In this study, we detected and analyzed convective 
self-aggregation in real atmosphere on the basis of 
satellite and field observations. An objectively defined 
index (MICA) based on satellite infrared imagery, 
in the same spirit as SCAI (Tobin et al. 2012), was 
proposed to quantify the degree of convective self- 
aggregation. The time series of MICA is obtained 
from Meteosat-7 observations and is related to the 
thermodynamic fields derived from the DYNAMO/
CINDY2011/AMIE sounding-array measurements.

Precipitation events captured during the DYNAMO 
campaign are categorized with MICA into aggregation 
and nonaggregation events and are used to contrast 
the composite time series associated with convective 
self-aggregation against those without. The temporal 

variability of the thermodynamic field accompanying 
self-aggregation was found to exhibit several features 
reminiscent of the existing knowledge of convective 
self-aggregation, although some discrepancies are ev-
ident as well. MICA and the number of cloud clusters, 
a proxy of SCAI, vary over time in a coherent manner. 
The current observations imply that remarkable ag-
gregation, as suggested by MICA, proceeds within a 
period of 24 h, substantially shorter than a typical time 
scale targeted in previous studies on self-aggregation.  
Otherwise, the characteristics known for self-aggrega-
tion, such as drying of a large-scale field, localization 
of the precipitation area, and enhanced radiative 
cooling, are present in the observations. A large-scale  
moisture budget analysis suggests an overall bal-
ance between the vertical moisture advection and 
the apparent moisture sink, while there remains the 
possibility that the horizontal advection plays a role 
in transporting moisture between the precipitating 
domain and adjacent dry area. Although the aspects of 
the current results suggest possible signs of convec-
tive self-aggregation in nature, the present work only 
opens a long pathway in search for more firm obser-
vational evidence to be confirmed in the future. The 
present study period is limited to the three months of 
intensive observation of DYNAMO, so the represen-
tativeness of the present findings needs to be assessed 
somewhere else. In the future, it will be interesting to 
compare the performance of MICA in greater detail 
in light of other related indices such as SCAI (Tobin 
et al. 2012), the organization index (Tompkins and 
Semie 2017), and the COP (White et al. 2018) and the 
relevant thermodynamic fields on a global, long-term 
basis. 
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