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Abstract—Passive microwave (PMW) satellite-based precipita-
tion over land algorithms rely on physical models to define the
most appropriate channel combinations to use in the retrieval, yet
typically require considerable empirical adaptation of the model
for use with the satellite measurements. Although low-frequency
channels are better suited to measure the emission due to liquid as-
sociated with rain, most techniques to date rely on high-frequency,
scattering-based schemes since the low-frequency methods are
limited to the highly variable land surface background, whose
radiometric contribution is substantial and can vary more than
the contribution of the rain signal. Thus, emission techniques are
generally useless over the majority of the Earth’s surface. As a
first step toward advancing to globally useful physical retrieval
schemes, an intercomparison project was organized to deter-
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mine the accuracy and variability of several emissivity retrieval
schemes. A three-year period (July 2004–June 2007) over different
targets with varying surface characteristics was developed. The
PMW radiometer data used includes the Special Sensor Micro-
wave Imagers, SSMI Sounder, Advanced Microwave Scanning
Radiometer (AMSR-E), Tropical Rainfall Measuring Mission
(TRMM) Microwave Imager (TMI), Advanced Microwave Sound-
ing Units, and Microwave Humidity Sounder, along with land
surface model emissivity estimates. Results from three specific
targets in North America were examined. While there are notable
discrepancies among the estimates, similar seasonal trends and
associated variability were noted. Because of differences in the
treatment surface temperature in the various techniques, it was
found that comparing the product of temperature and emissivity
yielded more insight than when comparing the emissivity alone.
This product is the major contribution to the overall signal mea-
sured by PMW sensors and, if it can be properly retrieved, will
improve the utility of emission techniques for over land precipi-
tation retrievals. As a more rigorous means of comparison, these
emissivity time series were analyzed jointly with precipitation data
sets, to examine the emissivity response immediately following rain
events. The results demonstrate that while the emissivity structure
can be fairly well characterized for certain surface types, there
are other more complex surfaces where the underlying variability
is more than can be captured with the PMW channels. The im-
plications for Global Precipitation Measurement-era algorithms
suggest that physical retrievals are feasible over vegetated land
during the warm seasons.

Index Terms—Emissivity, land surface, passive microwave re-
mote sensing, precipitation.

I. INTRODUCTION

THE derivation of microwave surface emissivity from low
earth orbiting satellite-based passive microwave (PMW)

radiometers begins with the proper characterization of the
surface geophysical state. In general, lower surface emissivity
is correlated with increasing soil moisture. PMW techniques for
estimating soil moisture at L-band (1–2 GHz) are based on the
contrast between the dielectric constant of liquid water (near
80) and dry soil (between 2 and 4 depending upon soil type).
The dielectric constant of the soil-water mixture increases with
increasing moisture, lowering the surface emissivity with a
corresponding decrease in the observed brightness temperature
(TB) [1]. For over-land PMW precipitation algorithms, the
surface emissivity forms the background for the top of atmo-
sphere radiance measured by a satellite-based radiometer. An
improved characterization of the land surface will be crucial to
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Fig. 1. Change in the TMI 10 GHz TB (Kelvin scale) over the southern United States due to series of rain events that moved across the are between 29 and
30 August 2003. (a) 10H GHz TB prior to the rain event, at 1030 UTC on 28 August. (b) TMI 85H TB at 0943 UTC on 29 August, indicating the movement of
convective-based precipitation across the area. (c) 10H GHz TB two days later at 0921 UTC on 31 August, after the rain systems had passed though. The small
box in each image indicates a 1-degree box centered in the domain of the Southern Great Plains (SGP) site (36.6◦ N 97.5◦ W).

better exploit the observations that will be gathered from the
joint National Aeronautics and Space Administration (NASA)
and the Japanese Aerospace Exploration Agency (JAXA)
Global Precipitation Measurement (GPM) Mission instruments.
Unlike its predecessor, the Tropical Rainfall Measuring Mis-
sion (TRMM) satellite, the core GPM satellite will orbit at a
higher inclination (65◦ compared to 35◦ for TRMM), providing
more observations of land areas whose coverage is subject to
wider seasonal variations such as snow cover, seasonal crop
lands, forests, partially frozen lakes at higher latitudes, to
irrigated lands, deserts and tropical rainforests closer to the
equator. The GPM Microwave Imager (GMI) includes high-
frequency (HF) channels at 166 GHz and at 190 GHz, which are
common to many microwave sounding radiometers, and will be
important for detecting cold season precipitation.

Of particular relevance to this effort are satellite-based ob-
servations gathered from the suite of conically scanning PMW
radiometers orbiting on low earth satellites and making ob-
servations in the frequency range from 10 to 190 GHz, since
these sensors will complement the core GPM satellite obser-
vations. In addition to TRMM, this includes the long running
(1987–current) system of Special Sensor Microwave Imagers
(SSMI) and its follow-on, the SSMI Sounder (SSMIS), and the
WindSat polarimetric radiometer onboard the Coriolis satel-
lite. These observations are augmented with PMW sounder
observations from the Advanced Microwave Sounding Units
(AMSU) onboard the National Oceanic and Atmospheric Ad-
ministration (NOAA) and EUMETSAT MetOp satellites, in
particular the AMSU-B and Microwave Humidity Sounder
(MHS) instruments. AMSR-E has also made contributions to
the constellation, but has recently stopped operating in 2011.

While considerable progress has been made in characterizing
the uncertainty in the over-ocean precipitation estimates from
these sensors, the over-land estimates have improved only
marginally [2], [3]. Present day over-land PMW precipitation
algorithms can generally be classified as semi-empirical; they
use physically developed models to define the most important
satellite channel combinations for precipitation detection and
precipitation rates, but then often employ statistical techniques
to identify regions of precipitation and its intensity. Often the
highly variable land surface background and its associated

emissivity can contribute more uncertainty to the precipitation
estimate than the contribution due the rain signal itself. In
practice, there is considerable empirical tuning and adaptation
of these models for use with the variety of satellite/sensor
observations. However, if the characteristics of the land surface
background can be determined, then more physically based
retrieval techniques (e.g., emission-based due to liquid clouds
and rain; scattering-based due to precipitation-sized frozen
hydrometeors) can be utilized.

There is a natural correspondence between soil moisture
and precipitation. Soil moisture controls the partitioning of
precipitation into infiltration, surface runoff, and evaporation/
transpiration from land surfaces. Immediately following rainfall
events, a strong correspondence should exist between the spa-
tial distribution of emissivity and precipitation if the ground is
not close to saturation. The precipitation time history modulates
the surface emissivity [4]. If it is raining during a satellite
overpass, the surface rainfall quickly alters the surface and its
emissivity; depending upon the revisit interval of the subse-
quent satellite overpass, the emissivity changes further as the
surface dries out and the water is absorbed by surface vegeta-
tion. As an example, Fig. 1 shows the depression in the 10 GHz
TB surrounding the Southern Great Plains (SGP) site near the
Kansas–Oklahoma border due to increased soil moisture fol-
lowing a rain event (Fig. 1(a) = 10 GHz before rain, Fig. 1(b) =
85 GHz during rain, Fig. 1(c) = 10 GHz after rain). 10 GHz
is the lowest frequency channel (and hence the once most
sensitive to surface conditions) found on the TMI and GMI.
Therefore, comparisons of surface emissivity retrievals together
with the previous-time precipitation totals are an indirect yet
qualitative way to validate emissivity retrievals over rain-
affected surfaces.

As a first step toward advancing to globally useful physical
retrieval schemes, an intercomparison project was organized
under the auspices of the NASA Precipitation Measurement
Missions (PMM) science team to determine the accuracy and
variability of several mature and emerging emissivity retrieval
schemes. Many of these emissivity data sets were derived
under nonprecipitating (cloud-free) conditions, developed for
use in numerical weather prediction (NWP) data assimilation.
In general, these tend to be for AMSU-A temperature sounding
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channels within the 50–60 GHz oxygen rotational line complex,
whereas the GPM era precipitation algorithms need to adapt
to observations from both window and HF sounding channels.
Therefore, this study focuses on a three-year period (July 2004–
June 2007) over different targets with varying surface character-
istics (e.g., dense vegetation, arid land, agriculture land, snow
cover), where common PMW radiometer data were collected,
and daily emissivity estimates were produced by each partic-
ipant. In addition to these subsetted satellite data, ancillary
data sets were provided, including model analyses from the
National Centers for Environmental Prediction (NCEP) and
cloud information from the International Satellite Cloud Cli-
matology Project (ISCCP) [5], which are needed by many of
the techniques and also for land surface model-(LSM) driven
emissivity estimates.

The emissivity estimates presented here are largely repre-
sentative of nonprecipitating scenes. However, for a complete
characterization of the varying surface emissivity input to GPM
core algorithms, it is important to know how the emissivity
varies owing to the presence or recent occurrence of precipita-
tion. Onset of rain can modify the top level soil moisture [6]
and associated emissivity [1] on the scale of minutes, and
retains a memory even after the rainfall ceases. The extent of
this precipitation/surface coupling exhibits a high spatial and
temporal variability, such that knowledge of the surface prop-
erties at one time may not be very useful at some future time.
One way to adapt is to carry over information from one satellite
overpass to the next via a dynamic emissivity database that
incorporates the history of the antecedent precipitation. On the
other hand, since LSMs are driven with precipitation obser-
vations, they physically adapt to changing weather conditions
and modify surface properties, which can subsequently be
fed to radiative transfer models (RTMs) to consistently esti-
mate surface emissivities at multiple channels. Since the land
emissivities at window channels between 19 and 85 GHz are
highly correlated, data reduction techniques are useful to ex-
tract independent information and classify self-similar surfaces.
For example, scenes containing coastlines are so variable that
surface-sensitive channels may never be useful. Over the ±65◦

latitudes over which the GPM-core will cover, these questions
are ill-posed and in need of further analysis.

In order to assess the current status of established and
emerging emissivity data sets and techniques, the PMM Land
Surface Characterization Working Group (LSWG), a group
of approximately 25 principal investigators et al. devised a
study whereby each participant would contribute emissivity
estimates generated over common targets with varying surface
characteristics and compared over different time scales (e.g.,
instantaneous and monthly). In this paper, we focus on the
results from three specific targets of the study where a high
confidence in understanding the seasonal and interannual sur-
face characteristics exists. While limited, this study represents
the first intercomparison specifically focused upon studying
the applicability of several different approaches for estimation
of microwave surface emissivity. These sites include the U.S.
SGP; the NOAA Hydrometeorological Testbed (HMT) South-
east U.S. site (HMT-SE), and the Canadian CloudSat CALIPSO
Validation Program (C3VP) site in southern Ontario, Canada.

Each investigator was provided common input data sets and
encouraged to use them (although some groups already have
mature products independent of this study) and was responsible
for providing an associated emissivity product and land surface
temperature, at the spatial and time scale of their particular
method. After a brief discussion of each technique, the various
analysis techniques are presented for each site. Suggestions
for further studies to establish a more complete description
of the global surface emissivity for the GPM algorithms are
provided.

II. DESCRIPTION OF THE STUDY

The goal of the LSWG study was to examine similarities and
differences of the various methodologies and assess potential
impacts of these differences on PMW-based precipitation re-
trievals. For example, if there is relatively good agreement over
“stable” targets like lightly vegetated land, then perhaps these
surfaces would be appropriate for an initial focus of the physical
algorithm development.

More specifically, an initial data period of one year was
expanded to three years (July 2004–June 2007) to give more
robustness to the results (although not all investigators were
able to expand their retrievals to the longer time period). Twelve
targets were selected, some which were common with activities
well underway by the International TIROS Operational Vertical
Sounder Working Group that included open ocean (three sites),
inland water, wetland surface, rain forest (two sites), high
latitude land (two sites), desert, and continental/agricultural
land (two sites). As mentioned above, this paper focuses on the
results from three sites: SGP (centered at 35N 97W); HMT-SE
(34N 81W); and C3VP (44N 80W). All have seasonal changes
in vegetation cover, although the type of vegetation varies. They
are all subject to winter snowfall, with C3VP receiving the
most snowfall. Other similarities and differences will be further
discussed in Section IV.

Several data sets were assembled to assist with the emissivity
generation and their evaluation. Each investigator was to use,
where possible, common data sets assembled by the LSWG
(however, mature data sets which were already developed were
not restricted to the common data). For the satellite data,
AMSR-E, SSMI, SSMIS, TMI, WindSat and AMSU/MHS
TB’s were prepared within a 1-degree latitude/longitude grid
centered at the above target coordinates. In addition to the satel-
lite TB’s, ancillary data from the NCEP Global Data Assimila-
tion System (GDAS) model (e.g., surface temperature, vertical
temperature and moisture profiles, precipitation, radiation,
wind speed), LDAS surface parameters, TRMM PR and
VIRS data, ISCCP cloud mask and 3-hourly rainfall estimates
from the Climate Prediction Center’s Morphing Technique
(CMORPH), TRMM Multisatellite Precipitation Analysis
(TRMM 3B42 product), and the Naval Research Laboratory
(NRL)-Blend [7]–[9]. These high-time resolution precipitation
data provide the previous time precipitation history for a time
interval prior to a satellite overpass. Such precipitation history
information is useful to stratify the results under clear, cloudy,
and raining conditions. All data were made available to partici-
pants through a study web site.
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TABLE I
SUMMARY OF EMISSIVITY INTERCOMPARISON PARTICIPANT GROUPS AND DATA SET ATTRIBUTES

TABLE II
DISTINCTION BETWEEN THE THREE MAIN APPROACHES TO MICROWAVE SURFACE EMISSIVITY ESTIMATION USED IN THIS INTERCOMPARISON STUDY

Each participant supplied emissivity estimates and land sur-
face temperature for some or all of the targets, and some
or all of the sensors and their associated frequencies. These
are summarized in Table I. Of these approaches, they can
be roughly categorized into three general types, which are
differentiated in Table II. The first, observationally based, offers
the simplest approach where the effective surface emissivity
is directly retrieved from clear scene satellite observations,
provided the atmospheric transmissivity and land surface tem-
perature is known (e.g., CNRS). These methods are described
in Section III-A. The second method is via rigorous solution
to dense media microwave radiative transfer theory, when fed
with surface properties such as soil type, snow grain size, etc.
(e.g., LSM; see Section III-B). Since this method is based upon
a forward RTM, it can be adapted into NWP data assimilation
systems and LSMs. The third method is via a physical retrieval,
where bulk media properties including surface roughness are
parameterized (e.g., NRL—see Section III-C). Physical re-
trievals form the basis for routine soil moisture products from
AMSR-E and WindSat [1], [4]. Some of the techniques are
hybrids of these approaches [e.g., the Microwave Integrated
Retrieval System (MIRS)], which treats the emissivity as an

additional parameter in the retrieval. MIRS is also described
within Section III-C.

III. DESCRIPTION OF THE EMISSIVITY

ESTIMATION METHODS

In this paper, a total of seven different emissivity estimates
were received for the intercomparison study, dependent upon
sensor and target (summarized in Table I). They include model
calculations, direct estimation from satellite observations, and
emissivity estimates as part of physical retrieval using satellite
observations. A short summary of each method is provided
below. The notation used to identify each algorithm in the
remaining discussion is shown in parenthesis in the upcoming
subsections.

A. Emissivity Estimates Directly From Satellite Observations

In approximate form, neglecting scattering affects, the satel-
lite measurement, or TB, at a particular frequency, ν, and
polarization, p, can be written as

TBν,p = Tu + τν [εν,pTs + (1− εν,p)Td] (1)
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where Tu is the upwelling atmospheric emission, τ is the
atmospheric transmittance, Ts is the surface temperature, εν,p
is the emissivity, and Td is the downwelling atmospheric
emission. Unlike the infrared (IR) where clouds and surfaces
can be well-approximated as a blackbody (ε ∼ 1), surfaces at
MW wavelengths generally scatter a portion of the incident
radiation. Over the range of frequencies that will be contained
on GPM-era sensors (e.g., 6–190 GHz), the associated
emissivity can vary widely and exhibit strong nonlinear
characteristics over frequency and polarization [10], [11]. The
variations are also a function of surface type [12], [13], [30].
Information on Ts, Td, and Tu can either be inferred from
the satellite measurements themselves or obtained through
ancillary data sources and calculated through RTMs. To a
first-order approximation, where the atmospheric contribution
is neglected, (1) can be simplified to

TBν,p = εν,pTs. (1a)

Thus, gaining an understanding on how the product of these
two terms can vary among different estimation techniques
can yield insight as to under which land surface conditions,
frequencies and polarizations where advancement in physical
precipitation algorithms can be achieved. This concept will be
explained further in Section IV.

The emissivity can explicitly be calculated from the satellite
observations through

εν,p =
(TBν,p − Tu − τνTd)

[τν(Ts − Td)]
(2)

and estimated via

εν,p =
TBν,p

Ts
. (2a)

This methodology has been used by different groups, and
four estimates of this kind are compared here [11], [14], [15].
The results differ primarily in the ancillary inputs used in the
calculation (surface skin temperature, temperature and water
vapor atmospheric profiles, cloud flag), and, to a lesser extent
in the radiative transfer code used to estimate Td and Tu.

National Center for Scientific Research (CNRS): Microwave
emissivities of land surfaces under clear conditions are es-
timated from SSM/I observations by removing contributions
from the atmosphere, clouds, and rain using ancillary data from
ISCCP and NCEP analyses [16]. The method initially described
in [18] calculates the emissivity directly from (2). Cloud-free
SSM/I observations are first identified using collocated visible/
IR satellite observations from ISCCP data. The cloud-free
atmospheric contribution is then calculated from an estimate
of the local atmospheric temperature and humidity profile from
NCEP reanalysis. The atmospheric contribution varies spatially
and reaches 15% and 50% in the Tropics for 19 and 85 GHz,
respectively. Finally, with the surface skin temperature derived
from IR observations (ISCCP estimate), the surface emissivity
is calculated for all seven SSM/I channels. Emissivity values
are calculated with a spatial resolution of 0.25◦ at the equa-
tor, for the 1993–2008 period, for all available SSM/I instru-
ments. Following the methodology described in [17], cloudy
microwave emissivities have been estimated from SSM/I obser-

vations, along with the retrieval of surface skin temperature and
integrated water vapor and liquid water content. In addition, a
parameterization of the frequency, angular, and polarization de-
pendence of the emissivities has been derived from the analysis
of SSM/I, AMSU, and TMI retrieved emissivities [17]. This
scheme is also utilized with the widely used Radiative Transfer
for TIROS Operational Vertical Sounder (RTTOV) [18].

Meteo-France (MF): As part of MF’s efforts, emissivity
is calculated following (2). Assumptions are made that the
surfaces are flat and specular [15]; however, it should be noted
for nadir viewing sensors like AMSU and MHS, a Lamber-
tian component can improve the estimates by up to 1% over
complex surfaces like snow and desert sand [19]–[21] but is
not employed for this intercomparison study. Temperature and
humidity profiles from GDAS have been used as input to the
RTTOV model to compute the atmospheric contribution to the
measured radiances. The goal of the MF emissivity retrievals
is for NWP model data assimilation, thus, to ensure that the
forward RTM calculations are consistent with satellite observa-
tions, and to minimize the rejection of a large amount of data, a
land surface emissivity parameterization is used in order to de-
scribe the emissivity for AMSU observations. A dynamical re-
trieval of the emissivity, at two well-selected window channels,
is performed to describe the emissivity for temperature and
humidity sounding channels [19], [22]–[24]. In addition, feasi-
bility studies have been conducted to extend to the use of SSM/I
data and to provide appropriate responses to cloud/rain detec-
tion and to the bias correction over land surfaces [25].

NOAA/Cooperative Institute for Climate and Satellites
(CICS): As presented in (1), the microwave emission char-
acteristics of a land surface viewed by a satellite microwave
radiometer may be inferred by canceling the atmospheric con-
tribution within the observed TB, which can be estimated using
RTM calculations assuming clear-sky (cloud-free) conditions.
Environmental parameters from the NCEP GDAS model are
used as inputs to the RTM. The emissivity is then computed
from (2).

In the CICS retrievals, the RTM is utilized on an atmosphere
consisting of 100 homogenous layers of 200 m from the surface
to the top of the atmosphere. The RTM uses the model of
Rosenkranz for water vapor, oxygen, and nitrogen absorption
in the atmosphere [26]. The environmental inputs to the RTM
from GDAS include the atmospheric profiles of pressure, tem-
perature, and water vapor at 21 levels as well as the surface
temperature. These atmospheric profiles are interpolated to the
heights of the 100 layers in the RTM, using a piece-wise
linear distribution for temperature and piece-wise exponential
distributions for pressure and water vapor. The CICS retrievals
were performed for the C3VP site in the winter season for
AMSU-B and MHS.

Nagoya University (Nagoya): Land surface emissivity is
computed through (2) [11]. Atmospheric profiles of tempera-
ture, humidity, and cloud water (required to compute optical
thickness τ ) are taken from the Japan Meteorological Agency
Reanalysis (JRA)-25 data set. This equation is applied to
TRMM TMI TB together with, unlike other existing algo-
rithms, the TRMM Precipitation Radar (PR) for rain-screening
purposes. The surface emissivity is first obtained for rain-free
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scenes as identified by the absence of rain via PR and then
spatially matched up with TMI measurements on a 0.2× 0.2◦

global grid. Rain-free surface emissivity is next interpolated
across the raining scenes in the close vicinity by applying the
Gaussian-weighted average

εi =

∑
εj exp

(
−d2ij
σ2

)

∑
exp

(
−d2ij
σ2

) (3)

where dij is the distance between the gridded TMI observation
i and TMI observation j (e.g., adjacent observations), and σ is
the correlation length, defined here as 0.1 deg, and the sum-
mations are performed over j. Raining areas unaccompanied
by any rain-free pixels within dij = 0.4 are excluded from
the present analysis. The Nagoya emissivity estimates contain
three different sets of values: 1) 1× 1◦ rain-free emissivity,
2) all-area emissivity averaged over 1× 1◦, and 3) all-area
emissivity at the original spatial resolution (0.2× 0.2◦). For this
intercomparison, the third set of emissivity estimates is used.

B. Emissivity Model Estimate

The most precise method to derive land surface emissivity
is through direct computation and estimation through LSMs
and emissivity models developed from direct measurements. A
wealth of information is available at frequencies at or below
37 GHz; however, emissivity computation and models (based
on direct measurements) are less known for frequencies above
85 GHz, many of which are extremely useful for cold season
precipitation estimation over land.

NASA/GSFC-Land Surface Model Forward Calculation
(LSM): Emissivity is simulated with a Land Information
System-Community RTM (LIS-CRTM) developed at NASA
Goddard Space Flight Center (GSFC) and at the Joint Center
for Satellite Data Assimilation (JCSDA) [27]. Although LIS
has several LSMs available, for this study, LIS is run with the
community Noah LSM (Vers. 2.7.1) [28]. Because the LSM re-
quires atmospheric boundary conditions or forcings to produce
dynamic land surface states, GDAS and the NOAA Climate
Prediction Center Merged Analysis of Precipitation 5-day pre-
cipitation totals are used. LIS/Noah is configured on a 1/4◦ grid
surrounding each target site, using the University of Maryland
land cover classification and the Food and Agriculture Orga-
nization soils data to provide vegetation and soil types. The
outputs of LIS/Noah, including dynamic soil moisture contents,
soil temperatures, land surface temperatures, and snow depths,
are then used as hourly inputs to CRTM’s land emissivity model
for the entire study period. CRTM computes land surface emis-
sivity for various surface types using a two-stream radiative
approximation [29]. Treatment of roughness and scattering pa-
rameters is handled through various physical models such as
geometric optics and dense media theory. The model takes satel-
lite zenith angle, frequency, soil moisture content, vegetation
fraction, soil temperature, land surface temperature, and snow
depth as inputs and computes surface emissivity at vertical (V)
and horizontal (H) polarizations. For snow conditions, an em-
pirical approach is taken to compute the emissivity via a combi-

nation of satellite window channel observations and emissivity
databases collected from ground-based microwave instruments
[30]. A key component in the model is the relationship that
maps the window channel observations to the snow type [30].
The mapping algorithms have been developed for AMSU-A,
AMSU-B, AMSR-E, and SSM/I. Once a spectrum is identified,
it is then adjusted for the requested zenith angle by using the
land emissivity model [29]. For other sensors, or when the win-
dow channel measurements are not available, the snow surface
emissivity (V and H polarizations) is set to a value of 0.92.

C. Physical Retrievals

Physical models which utilize multifrequency PMW obser-
vations, sometime in conjunction with ancillary data, can be
utilized to retrieve several geophysical parameters simultane-
ously. The advantage of such techniques is that there is a
physical constraint placed upon the retrievals, where the various
parameters being retrieved must be consistent with one another.
The two techniques described below can retrieve both surface
emissivity and land surface temperature.

NOAA/Microwave Integrated Retrieval System (MIRS): Re-
trievals of emissivity spectra from multiple TB are performed
consistently over land, ocean, sea-ice, snow, and coastal areas,
using 1-D variational approach (1DVAR) in the MIRS [31]. The
emissivity spectrum is contained in the retrieval state vector
which also includes temperature and moisture profiles as well
as skin temperature and cloud/hydrometeors parameters. The
CRTM is used as the forward operator in MIRS, which makes
it possible to perform the retrieval in all-weather conditions.
Both radiances and Jacobians with respect to all geophysical
parameters including emissivity are provided by CRTM. The
problem is ill-constrained, but this is alleviated by performing
the retrieval in a reduced space, selecting only a limited number
of degrees of freedom via an eigenvector analysis. The algo-
rithm is applied and the full emissivity spectrum retrieved for
the NOAA-18, 19 and Metop-A AMSU-A and MHS sensors,
the DMSP F-16 SSMIS sensor, and the AMSR-E sensor. The
1DVAR algorithm relies on covariance matrices. Those related
to the emissivity are computed offline using an ocean emissivity
model for the case of ocean and analytically determined emis-
sivities for the nonocean cases.

Physical Emissivity Retrieval (NRL): The microwave sur-
face emissivity is calculated using WindSat RTM and retrieved
land surface parameters of soil moisture, vegetation water con-
tent, and land surface temperature. The land surface retrievals
of these parameters are based on a multichannel maximum-
likelihood algorithm using 10 to 37 GHz PMW channels.
The algorithm outputs were validated against multiscale data
including soil moisture climatology, ground in situ network
data, precipitation patterns, and vegetation data from AVHRR
sensors [4]. The surface parameters considered by the algorithm
include soil moisture, vegetation water content, land surface
temperature, surface types, precipitation, and snow cover.

For a land surface with a layer of vegetation canopy, the land
surface emission is approximated using the τ − ω model [32]

εp = εsp exp(−τc) + (1− ωp) (1− exp(−τc))

× (1 + rsp exp(−τc)) (4)
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where εsp and rsp = 1− εsp are the desired soil emissivity and
reflectivity at polarization, p, respectively; ωp is the vegetation
single scattering albedo; τc is the slant vegetation optical depth.
The first term is soil emission attenuated by vegetation. The
second term represents emission contribution from vegetation.
TB is then estimated via (2).

The soil emissivity (εsp) and reflectivity (rsp) are influenced
mainly by soil moisture (mv), and, to a lesser degree, soil
texture and surface roughness. Soil moisture increases the
dielectric constant of soil-water mixture and thus decreases the
soil emissivity; the surface roughness increases scattering and
surface area, resulting in an increasing soil emissivity. Within
the WindSat retrieval, the surface reflectivity is parameterized
empirically [33]

rsp = [(1−Q)rop +Qroq] exp(−h) (5)

where p and q are orthogonal (vertical and horizontal) polariza-
tions. rop is the reflectivity of the smooth surface and can be
computed using the Fresnel equation and a dielectric mixing
model, and h and Q are empirical rough surface parameters
that are related to the emissivity enhancement and polarization
mixing effects due to surface roughness [34]. This simple pa-
rameterization is sufficient for modeling soil surface emission
for most applications [35].

IV. RESULTS

There are several aspects of the emissivity calculations that
need to be examined. In addition to their means and variances,
sensitivity to sky conditions (e.g., clouds and precipitation) is
of considerable importance to our application. In particular,
perhaps the single most important question is the sensitivity of
the surface changes during active precipitation: the lower fre-
quency channels should be more transparent to the atmospheric
conditions and the most sensitive to ground surface wetting.
The complexity is compounded by the typical larger field of
view (FOV) sizes on the conical sensors with lower frequency.
Additionally, consistency within polarization and across the full
frequency spectrum is also important, as specific surfaces will
respond in physically consistent ways.

As discussed, some approaches estimate emissivity from a
known surface temperature given an observed TB, as in (2).
However, not all approaches listed in Table I use the same
surface temperature, and it was found that they vary by as much
as 3% on the monthly mean time scale and even greater for
any instantaneous retrieval. This is shown in Fig. 2, where the
monthly mean emissivity under clear sky conditions for the
SGP site at 37 GHz vertical polarization is presented for several
of the techniques, along with the surface temperature and the
product of the two. (This channel will be critical for use in
the GPM-era physical retrieval algorithms, as it is affected by
cloud and rain drops). As can be seen in the top most panel, it is
difficult to discern any coherence in the emissivity data sets over
time, with the peak differences among the techniques being
on the order of 5%; it should be noted that these differences
were smaller at the lowest frequencies and greatest at the
higher frequencies. Surprisingly, there is considerable spread
in the surface temperature data (middle panel of Fig. 2), with

Fig. 2. (a) Monthly mean emissivity at 31 and 37 GHz (for vertical po-
larization for imagers and mixed polarization for AMSU/MHS), (b) surface
temperature and (c) the product of the two for SGP for the time period July 2004
to June 2007. The means include all available data under clear sky conditions.

differences on the order of 2%, or 5 deg K. However, this is
comparable to results found by others retrieving surface or skin
temperature from sensors such as AMSR-E [36], [37]. There is
somewhat of a tendency for those algorithms with the (lower)
higher emissivity values to have (higher) lower surface tem-
peratures; this most likely results in how the various retrieval
types decompose the satellite TB through (2) [and (2a)]. Finally,
when examining the product of the two data sets (bottom panel
of Fig. 2), there appears to be a more coherent set of curves
over the three year time series and perhaps a better clustering
within the classes of retrievals are previously described. Addi-
tionally, the maximum differences are on the order of 3%.
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Fig. 3. Monthly mean emissivity (for vertical polarization for imagers and mixed polarization for AMSU/MHS) times surface temperature for SGP site for
various frequencies and algorithms for the time period July 2004 to June 2007. The means include all available data under clear sky conditions. (a) 10 GHz,
(b) 19 GHz, (c) 22 and 23 GHz, (d) 31 and 37 GHz, (e) 85, 89, and 91 GHz, and (f) surface temperature.

As presented in the previous section, the main driver for the
satellite measurement comes from the product of the surface
temperature and emissivity, and it is that parameter that needs to
be accurately estimated for the advancement of the land surface
precipitation retrieval algorithms. Therefore, for the purposes of
this intercomparison study, we evaluate the different techniques
by a metric defined as the product of the retrieved emissivities

and the surface temperature used in the retrievals, in an attempt
to “normalize” the data and examine true variability among the
various methods and classes of emissivity retrieval. Most of
the results presented are for vertical polarization for the imager
sensors, although both polarizations were evaluated, whereas
the sounders have mixed polarization and are treated slightly
differently (as discussed in next section).
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The data for the various algorithms, targets, and seasons
were analyzed in a number of ways. In this section, an overall
seasonal summary is presented for each of the three target
areas. Next, the spectral signature of the retrieved emissivities is
examined and compared to expected values based on previous
studies done over specific surface types. Lastly, the impact of
weather conditions on the retrievals is examined. Additionally,
throughout much of the paper, similar channels were grouped
within the plots (e.g., 31 GHz from AMSU with 37 GHz
from the other sensors, etc.) since the emissivity response from
surface changes is expected to be similar.

A. Seasonal Summary

Initially, the monthly mean emissivity for all algorithms
under clear sky conditions was compared. Here, we focus on
the vertical polarizations for the imager sensors whereas the
AMSU/MHS data are restricted to view angles between 40
and 60◦ to give comparable results to the conically scanning
imagers that typically view the earth with a zenith angle near
50◦. Note that AMSU/MHS skews its polarization basis across
the scan swath with it being vertical at a view angle of 0◦;
however, for many surfaces, the emissivity varies greater with
view angle, thus a decision was made to compare the data in this
manner, but it is recognized that it is not necessarily a precise
comparison of the data from the different types of sensors (i.e.,
fixed view angle conical versus cross-track scanners). Each
emissivity estimate was matched up with the following closest
3-h data products of ISCCP and CMORPH. Clear sky condition
was flagged when the presence of clouds in ISCCP cloud mask
was less than 60%, near the neighboring target center, and in the
one-degree area, and CMORPH rain product indicates no rain.
Then, the mean value was calculated from those estimates that
were flagged as clear sky. It was found that these thresholds
produced the most stable results across all of the different
algorithms. These are summarized first by each of the targets,
and then some preliminary conclusions are presented.

SGP: The SGP site (35N 97W) located in central Oklahoma
is an agricultural region of pastures and wheat fields that expe-
riences seasonality much like HMT-SE; however, it is a more
arid climate due to its distance from any large body of water.
In terms of sensible weather, it experiences more extremes that
at HMT-SE; greater seasonal and diurnal temperature changes,
prolonged periods of dry weather, but can also experience
strong convective rains in the springtime and can be subject to
heavy snowfall in the winter. It is a very homogeneous region
of mostly flat terrain that is mostly used for agriculture [38].

Fig. 3 shows the monthly mean ε ∗ Ts for all available
frequencies (V polarization), sensors, and data sets. In general,
all of the estimates show the same general trend in seasonal
and interannual variability, apparently due to surface character-
istic changes like vegetation cover (spring to summer to fall)
and snow cover (winter); the degree of the variations from
year to year would be reflective of interannual differences in
vegetation and snow cover; however, the largest variations are
the annual cycle. Examining the data more closely, one can
see that the dispersion among the techniques increases with
increasing frequency, not unexpected since the complexity of

Fig. 4. As is Fig. 3, but for the HMT-SE site and for (a) 31 and 37 GHz,
(b) 85, 89, and 91 GHz and (c) surface temperature.

surface emissivity as well as atmospheric affects are larger at
the higher frequencies.

Examining the differences among the different data sets, it
is apparent that the LSM estimates tend to be higher than
the others, particularly evident at 37 and 85 GHz, where
perhaps the ISCCP cloud screen has missed cloudy scenes
(emission from nonprecipitating water droplets greatly affects
the microwave emission) and are impacting the inversion type
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Fig. 5. As in Fig. 4, but for the C3VP site and includes (c) 150/157 GHz and (d) surface temperature.

emissivity retrievals. On average, the differences noted at these
frequencies can be as large as 10 K on the monthly mean, which
is well beyond the signal due to liquid water or ice crystal from
light precipitating conditions [39].

The Ts are shown in panel (f); note that there is considerable
spread in the data. Some differences are due to the type of the
retrieval; the physical schemes (e.g., MIRS and NRL) show
some differences from the inversion schemes whereas the LSM
is not too different from GDAS, which was the baseline in
this study. Other inconsistencies may be attributed to different
“sampling” among the various techniques, i.e., not all of them
provided the same set of instantaneous retrievals over the month
due to differing conditions within their own retrieval. This
theme is essentially the same across all three targets.

HMT: The HMT-SE site, henceforth referred to as HMT,
experiences seasonal changes typical of a midlatitude continen-
tal site. Centered at (36N 81W) on the Tar and Neuse River
Basins of Central North Carolina, it is in an area of rolling
hills of between 100 m and 500 m in an area which is highly
forested and experiences seasonal vegetation changes. It can ex-
perience a wide range of precipitation ranging from prolonged
stratiform rains, heavy convective rains (and periodically, flood-
ing rains from land falling tropical systems), and occasional
snowfall [40].

Fig. 4 shows similar plots as in Fig. 3, but here we focus just
on 37 and 85 GHz; two channels critical for precipitation re-
trieval. Although not shown, the results at 10, 19, and 22 GHz at
HMT were very similar to what was found at SGP; however,
LSM tended to be higher during the warm seasons when com-
pared with NRL and Nagoya (both of which agreed very closely
at 10 GHz) and the other estimates at 19 GHz. MIRS tended to
be the lowest as was the case at SGP. Similarly, that basic trend
is evident at 31/37 and 85/89/91 GHz, and the dispersion among
the different data set increases with increasing frequency. The
effect of the atmosphere is a possible cause for the persis-
tent 5–10 K difference between LSM and the satellite-based
techniques. At the highest frequency, the two MIRS data sets
from AMSU/MHS and SSMIS are rather consistent, a testi-
mony to the physically consistent approach used within MIRS.

C3VP: The C3VP site (44N 80W) is perhaps the most
complex of the three sites in terms of geography and weather. It
is located in southeastern Ontario just to the northwest side of
Lake Ontario and a mixture of land and water, as well as forests,
woodlands, and grasslands [41]. There is a pronounced winter
season with extended snow cover; this site was selected because
of GPM’s extension into winter season precipitation and the
challenges that it faces with characterizing the snowpack and
its impact at microwave frequencies [42], [43].
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Fig. 6. Probability distribution functions (PDF) for SGP for all frequencies (vertical polarization for imagers, mixed for AMSU/MHS), algorithms and combined
for all time periods for clear sky. (a) 10 GHz, (b) 19 GHz, (c) 22 and 23 GHz, (d) 31 and 37 GHz, and (e) 85, 89, and 91 GHz.

Fig. 5 shows similar information as Fig. 4, but for the C3VP
location. Here, we also include measurements from 150 GHz
since this channel is critical in detecting falling snow [44]. Note
that this site is out of TMI coverage, so fewer estimates are
available for the comparison; however, the NOAA-CICS data
are available for this site. Unlike the previous two sites, the
dispersion at C3VP is greater even at the lowest frequencies
between 10 and 23 GHz. Some things are consistent; LSM

has the greatest values and MIRS the lowest. In general, a
larger dynamic range is seen during the annual cycle due to
the colder nature of this site [i.e., compare Fig. 5(d) with
Figs. 4(c) and 3(f)] and persistent snow cover that exists during
the winter season. Additionally, differences in Ts are noted,
in particular, with the physical retrieval techniques, which are
apparently a large reason for the lower/higher values with
MIRS/LSM.
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Referring to the higher frequencies (Fig. 5), a wide range of
values are seen across all of the estimates, although they gen-
erally track the seasonal to interannual variability in a similar
manner. Note that there are some months without any estimates
due to a lack of clear sky data at the site, which can be domi-
nated by low clouds in the winter months. During the cold sea-
sons, some estimates show a wider dynamic range (e.g., MIRS
and MF) at 37 GHz, although this is not necessarily any worse
at 85 GHz. A possible explanation is the effect of snow grain
size impacting the estimates at 37 GHz more than at 85 GHz
[13], [14].

B. Probability Distribution Functions (PDF)

The monthly means provide general idea of how the esti-
mates compare in the broad sense and also capture seasonal to
interannual variability. However, a more important aspect that
is vital for the precipitation community is how much variability
exists on an instantaneous scale for the different techniques and
locations. This is examined more closely through the use of
clear sky PDF’s. In the sections that follow, clear sky data are
used, and all of the instantaneous retrievals for each technique
for all days, months, and years are presented in the PDFs.

SGP: Fig. 6 presents PDFs of across all frequencies (vertical
polarization) and instruments for ε ∗ Ts for clear sky data. As
was the case for the monthly mean data, this product tends to
normalize the data (i.e., if the raw values of emissivity were
shown, there would be pronounced shifts of the peak PDF
values).

At 10 GHz, all four data sets presented have a tendency to
show a bimodal type of distribution; with peaks are 280 K and
around 265 K. This is most pronounced in the NRL/JPL and
Nagoya estimates. The NASA/LSM shows the broadest distri-
bution, perhaps again due to the lack of atmospheric contamina-
tion as well as temperatures from the LSM energy balance. The
PDFs at 19 GHz are more complicated to interpret; however,
there again is a tendency for bimodal distributions, but with the
peaks not as precisely defined as was the case at 10 GHz. The
PDFs at the water vapor channels near 23 GHz and also at
31/37 GHz are a little more self-consistent than at 19 GHz.
At 85/89 GHz, there is less evidence of a bimodal structure,
and the satellite-based techniques tend to show a peak at lower
values than those from NASA/LSM. The systematic differences
between the satellite-based techniques and the NASA/LSM
forward technique at higher frequencies relate to assumptions
in the CRTM forward model at high frequencies as well as
possible cloud contamination in the satellite-based techniques.
The bimodal character in the data might be attributed to diurnal
variations; however, it is also evident in the TMI data, which
should be sampled equally across the day. However, one might
expect that this could be an influence with the polar orbiting
satellites like Aqua, DMSP, and WindSat.

HMT-SE: Fig. 7 presents the PDFs for the HMT-SE site;
here, just 23, 31/37, and 85/89 GHz are examined. There are
similarities and differences with the 23 GHz data at HMT when
compared to SGP; the relative peak values of ε ∗ Ts among
the various algorithms are somewhat consistent; however, there
tends to be more disparity among the different data. Perhaps,

Fig. 7. As in Fig. 6, but for HMT-SE site and for (a) 22 and 23 GHz, (b) 31
and 37 GHz, and (c) 85, 89, and 91 GHz.

the moisture environment at HMT versus SGP is a possible
explanation. In addition, the MF and MIRS data appear tend
to be somewhat different as compared to the other estimates;
perhaps, a lack of convergence within those schemes under cer-
tain meteorological situations is a possible explanation. Better
agreement is evident at 31/37 GHz, and also there is consistency
to what was found at SGP. Finally, at 85/89 GHz, there is a clear
separation in the peak values between LSM and the satellite
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Fig. 8. As in Fig. 7, but for C3VP site and for (a) 22 and 23 GHz, (b) 31 and 37 GHz, (c) 85, 89, and 91 GHz, and (d) 150 and 157 GHz.

data. This is similar to what was seen at SGP; however, the
disparity at HMT is greater. Again, atmospheric moisture con-
tamination in the satellite-based estimates, coupled with issue
in the CRTM emission model as well as LSM temperatures
might be a plausible explanation.

C3VP: A similar analysis was performed for C3VP, and the
results are presented in Fig. 8. Compared with the previous two
locations, the range of data values at C3VP is much larger, in
particular, at the low end. This is due to the greater seasonal
variations in surface temperature, atmospheric moisture, and
periods of persistent snow cover. Hence, the results indicate
the largest spread among the various data. This demonstrates
the difficulties in doing precipitation retrievals in cold seasons.
Aside from LSM showing a peak value at a higher value
of ε ∗ Ts compared with the satellite derived values, further
conclusions are difficult to come by for 23, 31, and 85 GHz. In
the case of the LSM-derived estimates, a major issue causing
the discrepancies that is not as prominent at the other sites
relates to the presence of snow cover at the C3VP site, which
in turn causes the emission model in CRTM to adopt higher
values than observations. This issue is being addressed in the
next CRTM release, with an updated snow emission model.

As previously discussed, the HF channels are attractive
for use with cold season precipitation. Although the number
of emissivity retrievals at 150 GHz is limited in this study,
Fig. 8(d) shows the PDFs for the MIRS and CICS estimates.

Surprisingly, there is relatively good agreement among the data,
yielding promise in the use of such data for the retrieval of
falling snow.

C. Spectral Signatures

Other important aspects of the emissivity estimates to exam-
ine are the spectral response, differences between vertical (V)
and horizontal (H) polarizations, and their seasonal changes.
All of these properties are critical for algorithm development
for precipitation retrievals since multifrequency techniques are
typically employed [3], [31], [39]. It has been shown in several
studies that the relationship among all of these parameters is
fairly well known for various surface features. In the case of
the three target areas, the predominant surface types would
be vegetation cover, potential snow cover, and varying soil
moisture.

Because the C3VP site experiences the most dramatic sea-
sonal changes of the three that are being examined in this study,
the comparison of the spectral signatures will focus on this
location; however, the results from the other sites are fairly
consistent to those found at C3VP. Shown in Fig. 9 are the mean
emissivities as a function of frequency and season for both V
and H polarizations for each technique. The data plotted are for
all three years (where available) and are for clear sky data only.
It should be noted that this information is only provided for the
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Fig. 9. Seasonally averaged emissivity spectrum for V (solid) and H (dashed) polarization for the different data sets at the C3VP site: (a) MIRS, (b) LSM,
(c) NRL, (d) MF, and (e) CNRS.

conically scanning sensors and techniques. Also, since Nagoya
only generates estimates for TMI, no data exist for the C3VP
site since it is too far north.

Under vegetated conditions, a flat or slight increase in emis-
sivity with frequency is expected whereas when vegetation is
low, then a more dramatic increase in emissivity with frequency
would be expected [1], [4], [12], [14]. When snow cover is
present, a potential decrease in emissivity at or above 37 GHz is
anticipated [13]. Additionally, V is greater than H polarizations
except for under very dense vegetated conditions where the two
would be very close in magnitude. With this in mind, the results
presented in Fig. 9 can be interpreted.

First examining the season variability, MIRS shows the
widest range between V and H polarizations and the largest
decrease in emissivity value between low and high frequencies
during summer and more pronouncedly in winter; the other
techniques show less of a dynamic range difference between
V and H and generally show a flat or slight positive slope in
emissivity with frequency. The season of maximum emissivity
also varies among the data, with most showing the highest
values in the summer (due to maximum vegetation cover) and
the lowest in winter, while the transition seasons are in between.
CNRS appears to be an outlier, with the highest values in winter
and lowest in summer, although this has been traced to surface
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Fig. 10. Histograms of the 19H GHz emissivity, for seven different emissivity products, separated by the amount of previous-time precipitation, for the June
2006–July 2007 period over the SGP site. Each column indicates the emissivity product, and each row refers to the amount of previous one-day precipitation
(mm). The seven emissivity products (left to right) are the CNRS SSMI F13, CNRS SSMI F14, Meteo-France SSMI F13, Meteo-France SSMI F14, GSFC LSM
TMI, NOAA MIRS AMSR-E, and NRL WindSat. The five precipitation intervals are, top to bottom, P = 0, 0 < P < 1, 1 < P < 5, 5 < P < 10, and P > 10,
where P refers to the previous one-day accumulations in mm.

temperature affects. Many of the techniques show a decrease
in emissivity at 85/89 GHz in the winter season which can
be attributed to snow cover, so it is encouraging to see this
expected feature in the data. Finally, all of the estimates show
the expected consistency between V and H polarizations, with
the former being greater in every instance across the range of
frequencies being evaluated. However, the magnitude of this
difference varies widely over frequency and season.

D. Impact of Weather Conditions and Implications for
GPM-Era Algorithms

In this section, the impact of precipitation on surface emis-
sivity is presented through the use of multisatellite precipitation
products, which can be matched closely in time and location
to PMW satellite overpasses and any associated emissivity
estimate. The precipitation products examined were CMORPH,
3B42, and the NRL-Blend. The baseline product for each of
these data sets is a three-hourly precipitation accumulation,
updated every 3 h, produced on a 0.25-degree rectangular grid
between ±60◦ latitude. These products have found a wide
use in many applications, including the ongoing precipitation

Fig. 11. Illustration of how the data sets were prepared for use in Fig. 4. The
total one-day precipitation preceding the emissivity estimate was located, as
well as the time duration of the period of no-rain (dry period) just before the
one-day precipitation interval. This enables one to find the duration of the dry
period prior to the rain, as well as the emissivity estimate closest to the end of
the dry period. The percent change between these two emissivity estimates is
examined as a function of the dry period and the one-day precipitation.

validation project of the International Precipitation Working
Group [45], [46]. These precipitation data sets can be used to
locate when and how much precipitation fell in time intervals
prior to the PMW satellite overpass covering each of the LSWG
regions. Analysis from these precipitation data provides a
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Fig. 12. Percent change in the 19H emissivity, for different previous one-day precipitation accumulations (x-axis in each panel), and duration of different
dry (no-rain) intervals prior to the onset of precipitation (colored impulses in each panel). Top row: CNRS SSMI F13+F14 data over SGP site, using the
(left) CMORPH, (middle) TRMM 3B42, and (right) NRL-Blend precipitation data set. Middle row: Same as top row, but for the HMT-SE site. Bottom row:
Same as top row, but for the C3VP site.

reference for intercomparison of emissivity estimates from
rainfall-wetted surfaces.

Fig. 10 presents histograms of the 19H GHz emissivity, for
seven LSWG emissivity products, separated by the amount
of previous-time precipitation, for the June 2006–July 2007
period over the SGP site. Each column indicates the emissivity
product, and each row refers to the amount of previous one-day
precipitation (mm) from the CMORPH technique. The seven
19H GHz emissivity products (left to right) are the CNRS
SSMI F13, CNRS SSMI F14, MF SSMI F13, MF SSMI F14,
GSFC LSM TMI, NOAA MIRS AMSR-E, and NRL WindSat.
The five precipitation intervals are, top to bottom, P = 0,
0 < P < 1, 1 < P < 5, 5 < P < 10, and P > 10, where P
refers to the previous one-day accumulations (mm) from
CMORPH over a 1-degree box surrounding the SGP region.
During this one-year period, the satellite local crossing time
difference between DMSP F13 and F14 increased from 30 min
to 1 h, yet there is a fairly good comparison between the F13
and F14 emissivity histogram from CNRS and MF. In the ab-
sence of any previous one-day precipitation (top row), the his-
tograms are clustered around a value of ε = 0.93; for P > 10,
they cluster lower, near ε = 0.9. It is more difficult to extract
conclusions from LSM, MIRS, and WindSat as the previous
one-day precipitation increases (WindSat has a lengthy revisit
time owing to its narrow swath and has the least amount of

samples from which to build the histogram). However, such
representation does not properly assess the emissivity response
to precipitation, since the surface could have been very dry
prior to the one-day rain period, or very wet (i.e, rain falling
upon an already wet surface). Furthermore, use of a different
precipitation product could produce a different outcome.

To examine further, the CNRS SSMI F13 and F14 data were
separated into previous time dry periods, so that the one-day
rain period occurred after an interval of time where no rain
had occurred. To provide more samples, F13 and F14 were
combined, and the analysis period extended between June 2004
and July 2007. Fig. 11 shows the analysis concept. In Fig. 12,
the percent change in the 19H emissivity is shown in each panel
along the y-axis, for different previous one-day precipitation
accumulations (x-axis in each panel). The time duration of
different dry (no-rain) intervals prior to the onset of precipi-
tation is denoted by the colored impulses in each panel. The
top row represents the SGP region, using (left to right) the
CMORPH, TRMM 3B42, and NRL-Blend precipitation data
sets. Similarly, the middle and bottom rows indicate the HMT
and C3VP regions. This type of analysis provides an indication
of the amount of precipitation needed to produce a noticeable
change in emissivity relative to the dry period. For the SGP site,
there is essentially no response in the 19H emissivity until after
at least 2–5 mm day-1 accumulated rainfall, regardless of the
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precipitation data set used. For CMORPH and 3B42, up to
a 5–6% drop in the 19H emissivity (slightly less for NRL-
Blend) is noted for rain accumulations exceeding 15 mm
day-1 following a 6–10 day dry period. However, for the
HMT site, there is essentially no signature in the emissivity,
from any of the satellite-based precipitation data sets. This is
consistent with the higher year-round vegetation content in the
HMT region, compared to the agriculturally based SGP site.
However, for the Canadian C3VP site, no consistent picture
emerges as either the duration of the dry period or the daily
precipitation increases. Much of this is attributed to the poor
performance of these satellite-based precipitation data sets over
highly variable background surfaces (inland rivers and lakes
which freeze in winter, snow cover) relative to the ≈40-km
resolution of the SSMI 19 GHz channels. The GPM Cold
Season Precipitation Experiment (GCPEX) (early 2012) near
the C3VP site will produce additional opportunities to test these
results and assumptions.

V. SUMMARY

While limited to several small areas, this study represents
the first intercomparison specifically focused upon quantitative
assessment of the several strategies and approaches for estima-
tion of microwave surface emissivity. With better knowledge of
the surface, GPM algorithms can better utilize the information
contained in surface-sensitive PMW channels and move toward
a detection of the liquid associated with rain and the ice asso-
ciated with frozen precipitation. It was found that because of
apparent differences in the treatment of surface temperature by
the various techniques, a more valid comparison could be made
when examining the product of the emissivity and surface tem-
perature, and it is the product of these two terms that dominates
the satellite measurement and offer the greatest uncertainty
in terms of actual measurements that can be made by in situ
instruments. Additionally, the different methods were shown to
reproduce the overall seasonal characteristics of the underlying
surface, but significant differences were noticed from day-to-
day, the magnitude of which depends upon the surface type.
This was not unexpected, since there are limits to how each
technique can tune or adapt to a wide range of atmospheric and
surface conditions. This study did provide further direction on
how to consistently specify a priori information describing the
radiometrically variable surface emissivity within a precipita-
tion retrieval algorithm. For example, there is a high degree
of correlation between the emissivity at each channel, which
suggests that there are some underlying physical processes
that are influencing all channels. If the two or three most
important of these processes can be extracted, then these could
be used to make self-consistent changes to emissivities at all
channels.

The purpose of this study was to determine similarities and
differences between the various methods for estimating emis-
sivity and how this information can be used to move forward
in the advancing the current state of precipitation retrieval over
land. We conclude that:

• Confidence in emissivity estimates is greatest in vegetated
regions and for frequencies at or below 37 GHz.

• Emissivity can be used explicitly in the precipitation re-
trievals when the precipitation signal exceeds the surface-
related uncertainty. For example, a 3% uncertainly at 19
or 37 GHz is roughly 10 K in TB, certainly good enough
for liquid water computations in heavy rain, but not good
enough for discriminating rain/no-rain and retrievals of
lighter precipitation. Nonetheless, precipitation algorithm
developers can move forward in this regard.

• It appears that the impact of precipitation upon the emis-
sivities in the light-to-moderate vegetated area (SGP) is
most noticeable after moderate-heavy rain events (exceed-
ing 10 mm in the previous day).

• Although many of the input parameters used by the indi-
vidual techniques were controlled as much as possible, in
many cases, large differences were noticed. Since nearly
all global emissivities lie within a very small range (a
lower bound of roughly 0.2 for 10 GHz H polarization
over ocean, to 0.99 over dry bare soils), different external
forcings (e.g., surface temperature, atmospheric opacity,
cloud/precipitation screening) strongly influence the range
of values among these data sets.

• To test the validity of the LSM estimates, one could
“place” the atmosphere on top of the LSM emissivities
and then compared simulated TB with observed TB [22].
If the TBs agree well, then likely the emissivities are
realistic and within an uncertainty suitable for physical
precipitation retrieval techniques. Such a test would also
provide a means to indirectly verify or nullify the spectral
slope differences that were noticed.

• Complex surface types. The emissivity variability charac-
teristics of such surfaces are highly variable and affected
by smaller scale features (leaf area index, snow grain size,
etc.) that are variable both in time and spatially within
the large satellite footprint. Additional input information
upon the terrain and land cover within the FOV (e.g,
elevation, slope, and its variability) and dynamic surface
cover (e.g., MODIS snow cover or equivalent) within the
LSM approach would allow the retrievals to better identify
such complex scene conditions, which would be passed on
to the precipitation algorithms.

In terms of ongoing and future efforts of the PMM LSWG,
the group has undertaken several concurrent studies to establish
a more complete description of the surface emissivity for the
GPM algorithms, including:

• Self-similar surfaces. Gridded emissivity databases are
not particularly adapted to the geometry of a conical or
cross-track scanning radiometer, whose on-earth footprint
location and viewing azimuth varies directionally from
orbit to orbit. However, from many years of emissivity
retrievals, it is possible to identify surfaces that are largely
similar to others (e.g., grasslands, snow cover, deserts),
i.e., clustering approaches used to categorize the globe into
ten classes based on emissivity [17]). Further clustering
will expand upon this approach with clustering technique
based both on emissivity and emissivity co-variances.

• EOF analysis. There is a high degree of correlation be-
tween the emissivity at each channel. This information
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can be exploited so that self-consistent changes can be
made to the full emissivity spectrum, rather than channel
by channel. Empirical orthogonal function (EOF) analyses
can be used to describe the emissivity by only a few
parameters, but the spectral signatures of the EOFs are
likely to be dependent upon surface type.

• Dynamic emissivity databases. As shown in this paper, the
surface emissivity can change very rapidly with the onset
of precipitation. A dynamic database that adapts itself
using precipitation information from the previous revisit
time could be used to better characterize the “wet surface”
emissivity, and how variable these are from the emissivi-
ties that were extracted from noncloudy scenes. LSM and
physical emissivity techniques can be used to study how
the magnitude and time scale of the associated reduction
in surface emissivity, during and after precipitation events.
Additionally, statistical techniques such as clustering and
EOF could be used together with a before/after precipita-
tion analysis.

We do not expect that any one of these approaches will
provide a “best” estimate, rather, as a result of these analy-
ses, we hope to have a better description of the emissivity
variability under a wide variety of conditions, and this will
in turn offer GPM precipitation algorithm developers a “game
plan” in which to develop retrieval strategies over the next
five years. Ultimately, the best measure of surface properties
can be obtained from a synergistic use of passive and active
microwave sensors such as the GPM GMI and DPR; however,
with the majority of data coming from the GPM constellation
radiometers, stand-alone techniques such as those described in
this paper are still needed.
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