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1 INTRODUCTION 

Passive microwave rainfall algorithms have evolved steadily from those 
designed for the early Electronically Scanning Microwave Radiometer 
(ESMR), through the Scanning Multichannel Microwave Radiometer 
(SMMR) on Nimbus-7, and the Special Sensor Microwave Imager (SSM/I) 
instruments flying on the Defense Meteorological Satellite Program 
(DMSP). A number of algorithms fitting roughly three classes have 
emerged. These are (a) the “emission type” algorithms (e.g., Wilheit et al. 
1991; Berg and Chase 1992; Chang et al. 1999) that use low-frequency 
channels to detect the increased radiances due to rain over radiometrically 
cold oceans; (b) the “scattering” algorithms (Spencer et al. 1983; Grody 
1991; Ferraro and Marks 1995) that correlate rainfall to radiance depressions 
caused by ice scattering present in many precipitating clouds; and (c) the 
“multichannel inversion” type algorithms (Olson 1989; Mugnai et al. 1993; 
Kummerow and Giglio 1994; Smith et al. 1994; Petty 1994; Bauer et al. 
2001; Kummerow et al. 2001) that seek to invert the entire radiance vector 
simultaneously. Among these, the Wilheit et al. (1991) and Kummerow et al. 
(2001) algorithms are used operationally for the Tropical Rainfall Measuring 
Mission (TRMM) Microwave Imager (TMI) as well as the Advanced 
Microwave Scanning Radiometer (AMSR-E) flying on Aqua, while the 
Wilheit et al. (1991) and Ferraro and Marks (1995) algorithms are used with 
SSM/I in the Global Precipitation Climatology Project (GPCP) over ocean 
and land, respectively. The Bauer et al. (2001) algorithm is used at ECMWF 
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for rain assimilation experiments. In each case, algorithms have been 
optimized for the corresponding satellite sensor.  
     Algorithm intercomparison efforts, initially aimed at identifying the 
“best” algorithms have not been able to make much headway, as each 
algorithm appears to have strengths and weaknesses related to specific 
applications, while none appears to be universally better than the others.  
     The next advance in global precipitation monitoring, the Global 
Precipitation Measurement (GPM) mission, is providing new impetus 
towards a common algorithm framework. The GPM concept consists of  
a core satellite, with a dual-frequency precipitation radar (DPR), and a 
multichannel microwave imager (GMI). This component is similar in 
concept to the TRMM design but with improved radar capabilities and an 
orbit that will cover between 65–70° of latitude. In addition, the GPM 
concept uses a constellation of operational and dedicated radiometers to 
produce global, three hourly rainfall products required by many applications. 
The fact that radiometers for the GPM constellation are not fully specified 
and will evolve throughout the mission based on contributions from a 
number of different space agencies immediately imposes a number of high-
level requirements upon any algorithm designed for these sensors.  
     Of utmost importance is the need for a transparent, parametric algorithm 
that insures uniform rainfall products across all sensors. The requirement for 
transparency is clear. A mission of GPM’s scope should not rely on a single 
black box operated by any one individual. Instead, it requires an open 
architecture that will allow the international community to participate in the 
algorithm development, its refinement, and its error characterization. The 
requirement for a parametric algorithm is also self-evident. Since GPM is 
being designed as an ongoing cooperative concept among many agencies, 
algorithms cannot be designed for specific radiometers with defined 
frequencies, viewing geometry, spatial resolutions or noise characteristics. 
The algorithm should be applicable to any sensor. Such a requirement leads 
naturally to a generalized framework that avoids the need for specific 
frequencies for their application. Finally, the algorithm should be robust in 
such a way that differences between sensors can be confidently interpreted 
as physical differences between observed scenes rather than artefacts of the 
algorithm.  
     Together with the above requirements, algorithms designed for the future 
should also be able to fully characterize uncertainties at any space and time 
scale being considered by the users. This ranges from instantaneous 
estimates needed for many hydrologic and weather forecasting applications 
to large space and time averages required for climate model verification and 
climate trend monitoring. While such a requirement is also perhaps self-
evident, such a complete error characterization does not currently exist and 
is undoubtedly the greatest challenge facing the community.  
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2 THE ALGORITHM 

Rainfall retrieval algorithms are not fully constrained. Instead, a priori 
information must be supplied to help constrain the estimated 3-dimensional 
(3D) properties of precipitating clouds. The requirement that the GPM 

the statistical properties of the a priori information and the models can be 
formulated in a consistent way. In a physical framework, the optimum 

observation vector (brightness temperatures), y, plus additional a priori 
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P(x|y) is the posteriori probability of x when y is observed. P(y|x) is the 
probability of making observation y when x is present, while P(x) and P(y) 
are the a priori probabilities of x and y, respectively. The latter may come 
from global statistics of state and observations. The determination of P(y|x) 
requires a model that translates between state and observation space. This 
model may also be used to compute P(y) if P(x) is assumed to fully describe 
the a priori distribution of x. Examples of the application of the above 
principle are the ‘Bayesian’ rainfall retrieval schemes that found rather wide 
distribution in recent years (Evans et al. 1995; Kummerow et al. 1996; Olson 
et al. 1996; Haddad et al. 1997; Marzano et al. 1999; Bauer et al. 2001, 
Kummerow et al. 2001; Viltard et al. 2004).  
     One particular problem associated with these rainfall retrievals is that 
the model that connects states and observations, i.e., y = F(x) + ε (where ε is 
the modeling error), is generally nonlinear. This immediately implies that the 
inversion of this relation is state dependent, and the inversion must be 
formulated differently depending on whether (a) a first guess of the actual 
state, xb, and its error covariance, B, is known and Gaussian with respect to 
the true state or (b) only a pdf of state x is known from which the pdf of y 
can be calculated. If (a) applies, Eq. (1) can be transformed to:  
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algorithm be adaptable to any satellite sensor and that it produces realistic 

estimate of a state vector (precipitation profile), x, must be obtained using an 

uncertainty estimates for global application reduces the large set of previous 

information. 

algorithms to those that involve physical forward/inverse modeling where 

     Due to errors in modeling and observation (error covariance R), the relation 
between state and observation is usually described by probability density func- 
tions (pdf’s)This can be formalized with Bayes’ theorem (e.g., Rodgers 2000): 
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The probability of P(x|y) is maximized when the first derivative of Eq. (2) 
vanishes. This can be solved numerically by iterative procedures, and 
represents the “variational” retrievals. If Eq. (2) applies, it is more appro-
priate to seek the expected value of x. From practical considerations, the 
expected value is often expressed as (Olson et al. 1996): 
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even though the formulation in Eq. (3) makes the assumption that P(x) and 
P(y) are well known. This will be called “Bayesian” method even though 
both approaches are based on Bayes’ theorem. 
     Both solutions employ a forward model that often consists of combined 
cloud resolving and radiative transfer models, the latter involving clear-sky 
atmospheric and surface models. In the variational framework, these models 
have to be directly inverted because the difference between model-calculated 
and observed brightness temperatures must be translated into increments to 
the initial physical state. Here, adjoint models have recently been developed 
for rainfall retrieval purposes (Moreau et al. 2003). The first-guess state and 
its error characteristics, however, are difficult to obtain for precipitation and 
this method is only possible in a well-constrained large-scale model (Moreau 
et al. 2003, 2004). The main advantage of such a method is its global 
applicability and its flexibility with respect to any input data, while its 
disadvantage is the requirement of a well-defined first guess and the 
computational cost. In the Bayesian method, the biggest challenge is the 
definition of the a priori database, P(x), because it is not well known for 
precipitating clouds. Historically, Bayesian schemes used precipitation 
profiles derived from a set of existing cloud-resolving model (CRM) 
simulations to construct the a priori database of potential precipitation 
structures that might be seen by a radiometer. The CRMs provide a 
physically consistent set of full 3D hydrometeor and latent heating profiles. 
They also provide a simple method to use understood physical processes to 
constrain an inversion. The biggest disadvantage of the Bayesian algorithm 
is its lack of general applicability because only a few CRM simulations are 
available (and useful) to construct a valid P(x). A first-guess constraint may 
be possible to help constrain P(x) in the future. Inherent to both methods is 
the impact of the dynamical and microphysical formulations in the forward 
model that often dominate the uncertainties of the radiative transfer 
modeling. 
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3 THE PARAMETRIC ALGORITHM FRAMEWORK 

Most likely, future algorithms will be composed of elements present in both 
approaches, i.e., pdf-type estimators with static databases and variational 
elements where reliable first-guess information is available. The Bayesian, 
as well as variational techniques have the added advantage that they are 
intrinsically parametric and uncertainties in the a posteriori rainfall can be 
computed in a straightforward fashion. Nonetheless, the approaches are not 
without pitfalls. Variational approaches are contingent upon a good first 
guess, which is often difficult to make in the case of precipitation systems. 
Current Bayesian schemes, in addition to relying on incomplete CRM 
simulations, use procedures such as rainfall screening, freezing-level esti-
mates and convective/stratiform classification in order to improve the retrieval 
performance. Incomplete databases require procedures to solve the problem 
when none of the simulated profiles are close to the observed brightness 
temperature vector.  
     More subtle, but perhaps more important to both schemes, are the errors 
in the a priori database itself. Errors in the CRM simulations will cause 
radiometers with different channel combinations to retrieve different rainfall 
amounts. This potential aliasing is simple to illustrate with a hypothetical 
CRM that consistently produces too much ice in the simulation—thus 
creating simulations with large Tb depressions at high frequency for even 
modest rainfall rates. A sensor with only low frequency channels (e.g., 
10–37 GHz) may not be susceptible to this problem and will retrieve 
approximately the correct rainfall (all else being correct). A sensor with only 
high frequency channels (e.g., 85 and 150 GHz), on the other hand, will 
match large Tb depressions to relatively modest rain cases with large Tb 
depressions found in the CRM simulation. This will cause a consistent 
underestimation and a different result than that obtained from the first 
sensor.  
     Conceptually, a parametric algorithm must therefore address two distinct 
issues. It must avoid any channel specific procedures in the algorithm, and it 
must create an a priori database that is consistent with all the brightness 
temperatures that may be observed by individual radiometers. Avoiding 
channel specific procedures will be seen to be a relatively straightforward 
task in both the Bayesian and variational frameworks. Building a repre-
sentative a priori database with a verifiable error model is a far more 
challenging task. The error model, in particular, is very difficult to construct 
because of the role of CRMs in the forward computations. While they are 
useful in the sense that they add physical constraints to the clouds that may 
be retrieved, they are extremely difficult to verify quantitatively since they 
are constructed to simulate physically consistent scenes rather than the details 
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     Following is a description of a prototype parametric algorithm using both 
variational as well as Bayesian methods. While the various aspects of the 
algorithm are being developed separately and for different sensors, they are 
presented here as parts of the same conceptual algorithm for illustration 
purposes. In this conceptual algorithm, the a priori database is constructed 
from a combination of TRMM precipitation radar (PR), TMI and CRM 
information when the TMI footprint contains rainfall as determined from the 
PR. When the radiometer footprint does not contain rainfall, a variational 
technique is used with the radiometer data to obtain the clear air parameters. 
Together, these two components lead to a consistent 3D distribution of 
geophysical parameters that are fully representative of the observed scenes 
and fully consistent with the observation vector. Benefits of this more 
representative database are discussed in Viltard et al. (2004). The rainfall 
retrieval itself follows the Bayesian formalisms cited earlier. 

3.1 The non-raining simulations 
Over oceans, passive microwave radiances depend upon column-integrated 
water vapor, cloud liquid water, sea surface temperature, and surface wind 
speed. These geophysical parameters can be retrieved simultaneously from 
the TMI itself for which the TRMM PR shows no rainfall. Techniques such 
as those described in the literature (e.g., Wentz 1997) do exactly this. 
Unfortunately, that technique has some shortcomings with respect to the 
current objectives. It only works over ocean, and it seeks consistency only 
among the channels used in the particular inversion.  
     An alternative algorithm for clear-sky applications makes use of the 
previously introduced variational approach. Due to the many free para-
meters, in particular over land surfaces, the physical framework has to be 
kept very simple and only a few bulk parameters may be retrieved. As an 
example, we chose a set of four or six free parameters for ocean and land, 
respectively. Over ocean, these are surface skin temperature, near-surface 
wind speed, water vapor path, and cloud liquid water path, while over land 
these are surface skin temperature, effective water coverage, vegetation 
coverage, surface roughness, water vapor path, and cloud liquid water path. 
The surface skin temperature also determines the effective atmospheric 
temperature by assuming a constant lapse rate. The effective atmospheric 
temperature has to be understood as the temperature of the lower atmo-
sphere where most of the water vapor is present, while the effective water 
coverage over land summarizes the true coverage with open water and soil 
moisture. The effect of soil moisture and open water on land surface 
emissivity is very similar. Atmospheric absorption was calculated according 
to Liebe et al. (1992), sea-surface emissivity with the model of Ellison et al. 

of any one observed cloud realization. A more complete and verifiable
a priori database appears thus to be crucial for any algorithm in the GPM era. 



Microwave Rainfall Retrieval Algorithm 241 

(2003) and land surface emissivity with the model of Bauer and Grody 
(1995). The atmosphere consists of seven layers with constant depths. 

First-order climatological values were assumed for the above parameters to 
initialize the minimization of some SSM/I overpasses over South America 
and the Southern Caribbean on November 1, 2003. Figure 1 shows the 
resulting retrievals for the surface skin temperature, effective water coverage, 
vegetation coverage and water vapor path, respectively. The fields represent 
reasonable distributions showing the Amazon River basin in both Fig. 1b 
and 1c as well as the orography-dependent surface temperature distribution. 
The water vapor fields over ocean reach very low values in the presence of 
clouds, which indicate a possible aliasing effect between water vapor and 
liquid water absorption. Nonetheless, these results indicate that a variational 
retrieval is feasible for clear-sky applications providing background fields 

Figure 1. Example of variational retrieval of 
surface skin temperature (a), effective water 
coverage (b), effective vegetation coverage 
(c) and water vapor path (d) using SSM/I 
data on November 1, 2003. Scales at the 
bottom refer to units [K], [], [], [kg m–2], 
respectively. 

Figure 2. TB-departures (observation 
minus simulation) using first-guess (a, 
b) and after variational retrieval (c, d) at 
19.35 GHz (a, c) and 85.5 GHz(b, d) 
and horizontal polarization. Scales at the 
bottom refer to units [K]. 
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for the hydrometeor retrievals in the presence of rain. More realistic first-guess 
values as well as error covariances may be obtained from climatological 
fields produced by global model analyses. Potential refinements in the 
physical models used in the inversion may also lead to further 
improvements. 
     Figure 2 illustrates the brightness temperature departures before and after 
the retrieval at 19.35 and 85.5 GHz. The departures are quite large in areas 
with strong water vapor gradients and in the presence of clouds over sea with 
values above 20 K. This indicates that the first-guess values chosen for this 
example are only appropriate for illustration rather than operational 
application; however, the minimization performs well and reduces the 
departures to within instrument error limits. Clouds and light precipitation 
may be present in those areas where large departures remain after the 
retrieval (in particular at 85.5 GHz). The problem with precipitation is 
artificial, as the real database would be constructed from TMI data for which 
rain/no rain information is available from the PR. 

3.2 The raining scene 
Figure 3 illustrates the overall flow of the algorithm described here to derive 
precipitation profiles consistent with both radar and radiometer measurements. 
The non-raining parameter retrievals, indicated by blue-colored items in Fig. 
4, were introduced in the previous section. In this section, the rain-profiling 
scheme using PR, TMI, and CRM information is outlined. 
     The PR identifies pixels with radar echoes significantly above the noise 
threshold as “rain certain.” The weakest detectable signal by PR corresponds 
roughly to 0.5 mm h–1 in rain rate. The GPM 35-GHz radar is currently 
planned to have a threshold of approximately 12 dBZ, which corresponds to 
roughly 0.2 mm h–1. If PR detects a rain signal, the rain profile that best fits 
the PR reflectivity profile is selected from a set of precomputed CRM 
simulations. The reflectivity of the cloud-model profiles was obtained by 
computing single particle backscattering and extinction properties based 
upon Mie theory and assuming a gamma drop size distribution (DSD) with a 
given median volume diameter (D0) and µ = 3.  
     As an example, the initially assumed DSD model may be taken, which 
was constructed to be consistent with the Z-R relations assumed in the 
TRMM PR operational rain-profiling algorithm (2A25) developed by Iguchi 
et al. (2000). The particle size distributions of other hydrometeor species are 
the same as adopted by the CRM except for melting particles. Here, the 
microwave properties of melting hydrometeors are simplified in such a way 
that the particle size distributions are linearly transformed under an averaged 
dielectric function from ice to liquid within a half-kilometer layer below the 
freezing height. This simplified treatment of melting particles could be 
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replaced with a more elaborate microphysical model in the future (Bauer 
2001; Olson et al. 2001; Battaglia et al. 2003).  
     The CRMs used in the study were the Goddard Cumulus Ensemble 
Model (GCE) and the University of Wisconsin Non-hydrostatic Modeling 
System (UW-NMS), which are the same simulations used in the a priori 
database used in the Goddard Profiling Algorithm (Kummerow et al. 2001). 
 

 
Figure 3. Algorithm flowchart. Blue colored items are related to the non-raining (NR) 
parameter retrieval, yellow to the PR profile matching, and red to the comparison of matched 
profiles in the Tb space.  

 

The best fit in the PR reflectivity matching is defined as the one having the 
least root-mean-squared difference between observed (PR-1C21 attenuation-
uncorrected reflectivity) and computed reflectivity. When the observed Path-
Integrated Attenuation (PIA) from the PR is sufficient to provide a robust 
signal, there is additional DSD information available from the radar. In this 
case, the best-fit solution with respect to both the reflectivity profile as well 
as the PIA is sought by searching simulated profiles with several different 
DSD assumptions.  
     While computationally different from the PR algorithm developed by 
Iguchi et al. (2000), philosophically this step matches the PR procedure by  
 



C. Kummerow et al. 244 

adjusting the retrieved DSD to match both the reflectivity and the PIA when 
it is deemed robust. Figure 4 shows a snapshot of surface rain rate given by 

agreement. A direct pixel comparison of the observed and reconstructed 
surface rainfall for this scene shows a 
bias of 1.5% with a correlation of 

which includes an iterative step if PIA 
is robust, shows the flow of the above 
procedure. 
     At this point in the retrieval, the 
raining and non-raining scenes must be 
merged. As discussed in the previous 
section, the non-raining retrievals are 
applied to all TMI footprints in which 
PR observed no rain. The rain retrieval, 
however, is applied to PR pixels that 
generally have higher spatial resolution 

in resolution can lead to small areas 
within partially raining TMI footprints 
for which the clear air retrieval could 
not be performed but for which PR 
observes no rain.  
     These areas must be filled by an 
interpolation scheme before the final 
step in the raining retrieval can be 
completed. This interpolation scheme 
is also used to prescribe the surface 
conditions under the raining pixels. 
 
 

 
Figure 4. Top: Surface rain rate given by CRM profiles that best fit the measured PR profiles. 
Bottom: 2A25 surface rain rate for the same scene as the top panel. 
 

Figure 5 illustrates this procedure, originally developed by Shin and 
Kummerow (2003), for the cloud liquid water field over ocean. All clear air 
fields are treated in a similar manner. Figure 5a represents the TMI retrieval 
for column water vapor (CWV) in this example. Figure 5b shows the CWV 
field associated with the raining retrievals, and Fig. 5c the final CWV field 
in which TMI CWV has been mapped to PR pixel locations and missing 
values have been interpolated. The slightly lower CWV values in 
precipitation (relative to the non-raining surroundings) might be an artifact 

the matched CRM profile and 2A25 surface rain, exhibiting good qualitative 

than the TMI footprints. This difference 

0.96. The light grey portion of Fig. 3, 
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of the algorithm still under development. Inspection of the raining profiles, 
however, indicate they are nearly all saturated. As such, the lower CWV 
values might be real if one takes into account the lower temperatures 
associated with evaporation cooling associated with light precipitation. The 
interpolation over land will introduce greater uncertainties as the effective 

     Precipitation profiles obtained from the PR matching technique are 
assigned to the satellite swath. The geophysical parameters unobservable by 

provided from the TMI retrieval in non-raining scenes and interpolated to the 
raining field of view (FOV). Radiative transfer 
calculations using the Eddington approxima-
tion (Kummerow 1993) are then performed 
along slant paths that intersect a few neigh-
boring PR pixels to properly take into account 

brightness temperatures are convolved with 
the Gaussian antenna pattern using the 3-

water contents, along with the computed 
brightness temperatures along the scan center 
of the rain feature shown in Fig. 4. The 

tures generally exhibit good but not perfect 
agreement.  
 
Figure 5. Simulation steps for a non-raining scene over 
ocean. (a) Shows the columnar water vapor retrieved 
from the TMI data for pixels in which PR detected no 
rain. (b) Column water vapor in raining pixels as 
determined through the selected cloud resolving model 
profile. (c) The merged and interpolated final column 
water vapor field. 

 

than the observed ones, the assumed drop 
sizes can be decreased in order to increase 
the liquid water content determined from PR. 
As can be seen from the diagram, however, 
this can only be done for those pixels for 
which PR is not able to determine its own 
DSD through the PIA estimate. Variational 

the TMI incidence angle of 52.8°. The computed 

water coverage, vegetation cover, and surface roughness can vary rapidly. 

dB-beam width of each TMI channel. 

PR such as SST, surface wind speed, water vapor, and cloud water are 

observed and computed brightness tempera-

Figure 6 shows the retrieved liquid and ice 

Tb’s at the lower frequency channels are lower 

     The dark grey  portion of Fig. 3 summa-
rizes the final procedure. If the computed 
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methods that seek to adjust the DSD to simultaneously fit PR and TMI 
observations are also possible. Such solutions may eventually prove superior 
to the current approach. They are, however, less transparent.  
     In the current formulation, the final iterative procedure will adjust DSD, 
but only if the DSD is the one assumed by PR and not when it can be 
directly observed by the sensor. In addition to any Tb disagreements in the 
emission channels, Fig. 6 shows occasional discrepancies in the scattering 
channel (85 GHz), which can be attributed to an uncertainty in the 
microphysical treatment of ice hydrometeors in CRM. This discrepancy is 
minimized by interactively updating the ice density in the CRM model. 
Precipitation profiles consistent with both radar and radiometer are thus 
obtained by repeating the entire procedure with updated DSD and ice density 
models. 

3.3 The a priori databases 
Construction of the a priori databases is straightforward once the 3D raining 
and non-raining parameters derived from TRMM TMI and PR swath overlap 

data have been determined. 
Compared to previous efforts 
that relied solely on the 
CRMs to provide cloud 
structures, the current metho-
dology insures that the a 
priori database is more fully 
grounded in observations, 
which would improve the 
databases’ representativeness 
of actual rainfall spectra.  
 
Figure 6. Top two panels: Vertical 
cross section at the scan center of 
precipitation water and ice given 
by CRM profiles that best fit the 
measured PR profiles. Bottom four 
panels: Observed TMI brightness 
temperatures (solid lines) and 
computed brightness temperatures 
(dashed lines) at 10 GHz, 19 GHz, 
37 GHz, and 85 GHz (vertical 
polarization). 
 
 

Through the database construction process, furthermore, it is possible to 
relate the derived rainfall profiles to the environmental geophysical 
parameters controlling rainfall formation such as surface and upper-level 
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humidity, wind velocity field, freezing height, and aerosols using other 
satellite retrievals and/or objective analysis data archives. Since a set of 
observed brightness temperatures are not always sufficient to single out a 
proper rainfall profile, those quantities could be used to separate and index 
the databases to better constrain the retrieval. The resultant a priori 
databases would not only improve the algorithm performance but also 
provide climatological insights on the physical processes governing rainfall 
properties.  
     A priori databases can be constructed for any sensor once the sensor 
characteristics are defined. One important exception is that the current 
procedure only refers to microwave window channels. Sounding channels in 
the 60- and 118-GHz oxygen absorption bands as well as the 183-GHz water 
vapor absorption channels depend upon details of the temperature or 
humidity profiles that are not observed directly by TRMM. These are not 
well represented by the above procedure and would not be well represented 
by the a priori database.  

3.4 The retrieval 
Once the a priori databases of hydrometeor profiles and clear scenes, as well 
as their corresponding Tb’s are constructed for each sensor, a Bayesian 
retrieval methodology can be used to select those profiles that are consistent 
with the observations.  
     Synthetic retrievals using procedures similar to those described here for a 
number of radiometer designs are presented in Shin and Kummerow (2003). 
Synthetic, in this case, meant that satellite brightness temperatures were 
simulated from the 3D geophysical parameter derived for the a priori 
database.  
     Results from that work shows very small biases between satellites (<2%) 
and root mean square retrieval errors that varied with satellite instrument 
specifications, as one would expect. Radiometers with higher spatial 
resolutions and more channels tended to outperform less sophisticated 
sensors. The most important radiometer characteristics needed to reduce 
random errors appear to be the availability of low frequency channels 
(sensitive to liquid water emission) with good spatial resolution.  
     Results from a simplified implementation of the algorithm described here 
are shown in Fig. 7. The simplified scheme uses only the brightness 
temperature difference (TbV – TbH) at 19 GHz in the retrieval. This use of 
19-GHz channels is not necessarily a simplification as a sensor may well 
exist that only has these channels.  
     The simplification was introduced by directly using the TRMM PR 
rainfall product plus some arbitrary but constant assumptions to compute 
Tbs needed in the a priori database. An additional simplification was made 
to use observed rather than computed brightness temperatures for the rain-free 
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scenes. This is equivalent to the procedure described earlier, but only 
applicable to the TMI instrument as the observed Tb cannot be readily 
transformed to other sensors. The simple algorithm is used primarily to 
analyze error characteristics of the more complex retrieval algorithms. As 
such, it is functionally quite similar to the main algorithm presented here but 
not parametric.  

 
Figure 7. (a) Retrieved conditional rainfall. (b) The probability of rain. (c) Retrieved 
conditional rain for probability of rain greater than 50%. (d) Uncertainty of rain [%] (see also 
color plate 6). 

 

Panel (a) of Fig. 7 shows the retrieved rainfall rate. The entire area is 
covered by light rain surrounding smaller convective cores. The 100% rain 
coverage may seem physically unreasonable. What is shown, however, is the 
conditional rain rate. Panel (b) shows the probability of rain as derived from 
a lookup table correlating the observed Tb and sea surface temperature to the 
probability that PR saw rain in that radiometer FOV. The area of light rain 
can be seen to have a fairly low but nonzero probability of rain and as such 
may still seem unphysical. The plot is shown to illustrate the probabilistic 
nature of the Bayesian schemes described here. Because the radar observes 
small, but nonzero rain probabilities for virtually all observed 19-GHz Tbs, 
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the retrieval cannot arbitrarily use a Tb threshold for a rain/no rain discrimi-
nation without introducing errors. Panel (c) shows the same results as panel 
(a), but with about 50% probability of rain threshold. This may be a more 
conventional approach to showing rain maps. Panel (d) provides the 
instantaneous uncertainty (expressed in %) of the retrieved rainfall. Areas of 
light rain have large percentage errors, while moderate rain has significantly 
more signal. These results match Viltard et al. (2004) who found similar 
numbers with a different implementation of a Bayesian approach.  

4 THE ERROR MODEL 

There are many sources of error that must be carefully defined if true 
uncertainties are to be quantified. Both Bayesian and variational retrievals 
principally imply an error calculation (Olson et al. 1996; Kummerow et al. 
1996; Marzano and Bauer 2001; Bauer et al. 2002). Yet, the intrinsic 
uncertainties computed from these schemes are only one component. The 
Bayesian scheme has four independent sources of error. These are (1) the 
uncertainties introduced by imperfect or incomplete data used to construct 
the a priori database; (2) the uncertainty introduced by the inversion 
methodology; (3) the uncertainty resulting from potentially unknown changes 
in regional and seasonal cloud properties; and (4) the uncertainty introduced 
by any errors in the algorithm formulation. The Bayesian methodology deals 
only with the second source of error. The variational approach is less 
susceptible to database errors, particularly if the first-guess field is robust. 
Variational approach uncertainties, however, can be computed explicitly 
only for linear inversions. As such, error models are not simple to 
implement. Validation of rainfall retrievals with independent data has proven 
equally difficult due to problems associated with the representativeness of any 
data source.  
     Within the Bayesian framework, and a priori databases generated from 
PR observations instead of CRMs, the three error sources not directly dealt 
with by the Bayesian methodology can be quantified. Errors in the 
construction of the a priori database can be quantified by simply changing 
assumptions used in the database construction over a reasonable range of 
values. Because the observations are used to quantify the relative occurrence 
of various rain realizations, small errors in the database construction are not 
likely to have significant impacts upon the final result. A major problem 
encountered when using only CRMs was the completeness and representative-
ness of the a priori databases. With over six years of TRMM radar data 
representing roughly 1010 raining pixels, these issues are no longer a source 
of uncertainty. Any errors introduced by smaller databases used for com-
putational purposes can be explicitly evaluated.  
     The second source of error was that introduced by the inversion. Bayes’ 
theorem explicitly accounts for these. It does not, however, account for the 



C. Kummerow et al. 250 

third source of error – regional and seasonal changes in cloud properties. 
While it seems that these potential biases could be removed by using the 
appropriate database as determined from the PR data, this is not possible for 
time periods outside the TRMM era. Conceptually, the simplest method to 
quantify these errors is to run the retrieval multiple times, changing only the 
time/space domain for which the database is constructed. Differences between 
retrievals in this case must be attributed to changes in the rainfall properties 
that the TRMM radar is able to capture but the radiometer is not. This 
constitutes a bias error if large space/time domains are considered. A careful 
analysis using six years of TRMM radar data should be able to quantify the 
typical magnitude of these errors for use with prior or future radiometer data. 
     The last source of error is due to any shortcomings in the algorithm 
formulation. Of particular importance are any changes in parameters that are 
assumed constant in the forward model or specified incorrectly by the CRMs 
if these are used. The variational retrieval framework provides a test bed for 
solving this task to the degree of detail that is resolved by global model 
cloud/precipitation parameterizations and plane-parallel radiative transfer 
modeling. Ground-based data can alternatively be used. 

5 CONCLUDING REMARKS 

The entire algorithm as described does not currently exist. If it did, we could 
not speak of the “next generation of microwave rainfall algorithms” as 
implied by the title. Nonetheless, we have attempted to outline a framework, 
and give specific examples of work currently underway to achieve the goals 
set forth by new measurement missions and new user demands. There is no 
doubt that perhaps some of the details are too vague, while some of the 
illustrative implementations are too detailed and perhaps not optimal. We do 
not dispute that but instead would encourage new researchers to enhance, 
refine or simply amend any of the procedures described here for their optimal 
use. In speaking about a next generation algorithm, we only provided a 
specific solution to illustrate that improved methodologies are possible over 
what is currently done without wishing to imply that the specific solution 
offered here is the only possible solution. Continued impetus provided by the 
Global Precipitation Mission related research around the world will 
undoubtedly help to focus and refine the concepts presented here. 
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