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ABSTRACT

While a large number of methods exist in the literature for retrieving rainfall from passive microwave
brightness temperatures, little has been written about the quantitative assessment of the expected uncer-
tainties in these rainfall products at various time and space scales. The latter is the result of two factors:
sparse validation sites over most of the world’s oceans, and algorithm sensitivities to rainfall regimes that
cause inconsistencies against validation data collected at different locations. To make progress in this area,
a simple probabilistic algorithm is developed. The algorithm uses an a priori database constructed from the
Tropical Rainfall Measuring Mission (TRMM) radar data coupled with radiative transfer computations.
Unlike efforts designed to improve rainfall products, this algorithm takes a step backward in order to focus
on uncertainties. In addition to inversion uncertainties, the construction of the algorithm allows errors
resulting from incorrect databases, incomplete databases, and time- and space-varying databases to be
examined. These are quantified. Results show that the simple algorithm reduces errors introduced by
imperfect knowledge of precipitation radar (PR) rain by a factor of 4 relative to an algorithm that is tuned
to the PR rainfall. Database completeness does not introduce any additional uncertainty at the global scale,
while climatologically distinct space/time domains add approximately 25% uncertainty that cannot be
detected by a radiometer alone. Of this value, 20% is attributed to changes in cloud morphology and
microphysics, while 5% is a result of changes in the rain/no-rain thresholds. All but 2%–3% of this
variability can be accounted for by considering the implicit assumptions in the algorithm. Additional
uncertainties introduced by the details of the algorithm formulation are not quantified in this study because
of the need for independent measurements that are beyond the scope of this paper. A validation strategy
for these errors is outlined.

1. Introduction

Passive microwave algorithms designed to measure
precipitation can be grouped into a relatively small
number of classes depending upon the physical prin-
ciple employed. The “emission” principle exploits the
increased radiation originating from cloud and rainwa-
ter over radiometrically cold surfaces, such as the
ocean. A well-known example using 19-GHz brightness
temperatures is described by Wilheit et al. (1991) and
later by Chang et al. (1999). While conceptually simple,
emission techniques require knowledge of the freezing
level, the integrated cloud and water vapor content, and
the shape of the rainfall profile in order to relate the
integrated water observed by the radiometer to the sur-

face rainfall. In addition, these techniques must account
for the rainfall inhomogeneity within rather large sat-
ellite fields of view [�50 km for the Special Sensor
Microwave Imager (SSM/I) and �25 km for the Tropi-
cal Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI) and the Advanced Microwave Sounding
Radiometer (AMSR)-E] in order to properly compen-
sate for nonlinearities in the brightness temperature
(Tb) versus water content relationships. The lack of
constraints on these parameters translates directly into
large uncertainties within individual pixels.

To reduce uncertainties at the pixel level, algorithms
such as those developed by Petty (1994) and Aonashi
and Liu (2000) rely on an approach similar to that
above mentioned, but with additional frequencies used
to help constrain the problem. The additional channels,
unfortunately, do not provide any additional direct in-
formation about the surface rainfall. Instead, the addi-
tional channels are used to help describe some property
of the underlying cloud, such as its convective or strati-
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form nature or whether the scene corresponds to deep
or shallow convection. This information is then used, in
conjunction with appropriate parameterizations, to bet-
ter constrain what the vertical rain profile or its hori-
zontal inhomogeneity might be. As such, these methods
can reduce the uncertainty at the pixel level, but only at
the expense of additional assumptions and parameter-
izations that must themselves be validated if a complete
error model is to be generated.

An even more complex family of algorithms is the
Bayesian approaches that employ cloud resolving mod-
els (CRMs). These algorithms are described by a num-
ber of authors (e.g., Mugnai et al. 1993; Kummerow and
Giglio 1994; Smith et al. 1994; Marzano et al. 1999;
Bauer 2001; Kummerow et al. 2001). In these methods,
the CRM outputs are coupled with radiative transfer
calculations to construct a priori databases of satellite
observables along with the cloud model hydrometeor
fields. A Bayesian or probabilistic approach is then
used to compute the most likely a posteriori distribu-
tion when constrained by the actual measurements. Un-
like the previous multifrequency approaches, these
schemes can make direct use of explicit physical mecha-
nisms contained in the CRMs to link satellite observ-
ables to the rain structure. The disadvantage of these
approaches is their susceptibility to errors in the a priori
database in terms of the accuracy of the microphysical
details provided by the CRM (e.g., Panegrossi et al.
1998), the completeness of the CRM databases, and the

fidelity with which the model outputs capture differ-
ences in climate regimes. These climate regime biases
can be difficult to observe at individual validation sites
because of the large random noise associated with in-
dividual clouds. They are, however, critical to under-
standing climate signals and trends.

One apparent manifestation of these biases is the
systematic difference in the retrieved rainfall products
from the TRMM radar and radiometers during El
Niño–Southern Oscillation (ENSO) periods (Berg et al.
2002). During ENSO both the emission scheme
(TRMM 3A11; Wilheit et al. 1991) and the cloud mod-
el–based Bayesian scheme (TRMM 2A12; described in
Kummerow et al. 2001) show marked increases in tropi-
cal oceanic precipitation that are not seen by the
TRMM radar (Robertson et al. 2003). It is unlikely that
the differences are the result of simple radiometer al-
gorithm artifacts because both the “emission”-based al-
gorithm and the Bayesian schemes show amazingly
consistent climate rainfall trends despite the different
formulations and large differences at individual storm
scales. Figure 1 shows a time series of the two TRMM
radiometric algorithms and the TRMM radar (2A25)
rainfall for tropical oceans.

Figure 1, in addition to revealing the rainfall trends
observed by the TRMM radar and radiometer algo-
rithms, also highlights the difficulties associated with
validating rainfall products. The average oceanic rain-
fall from the two radiometeric algorithms shown in Fig.

FIG. 1. Time series of TRMM operational radar (3A25) and radiometer rainfall anomalies.
The radiometer products consist of the profiling algorithm GPROF (3A12) and the emission
algorithm (3A11). Time series corresponds to oceanic rainfall between 36°N and 36°S.
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1 differs by only 0.06 mm day�1. This corresponds to
roughly 4% of their mean values. The difference be-
tween radar and radiometer rainfall during the ENSO
event of 1997/98 is only 7% of the average mean global
rainfall. At the global scale, represented by Fig. 1, these
4%–7% differences can be quite significant. These
same differences, however, are much smaller than the
10%–15% regional differences known to exist between
these products and are still smaller than most direct
comparisons between satellite- and ground-based ob-
servations.

Despite the above difficulties related to the valida-
tion of rainfall products, it is clear that algorithms de-
signed for the future must be able to fully characterize
uncertainties at any space and time scale being consid-
ered by the users. This ranges from instantaneous esti-
mates needed for many hydrologic and weather fore-
casting applications to large space and time averages
required for climate model verification and climate
trend monitoring. While the need for a full description
of uncertainties is perhaps self-evident, such a complete
error characterization does not currently exist. This pa-
per describes an algorithm designed to quantify these
both instantaneous as well as systematic errors at
longer time and space scales. To focus on errors, the
algorithm itself has been kept extraordinarily simple,
and as such is not intended to replace any of the op-
erational rainfall algorithms. For the time being, the
algorithm is also limited to oceanic areas.

With these simplifications, one may legitimately ask
whether such a scheme is appropriate to understand
uncertainties in the more complex algorithms, such as
the Goddard profiling algorithm (GPROF). While
there is certainly some information that can be gleaned
from this study, it is premature to answer this question
fully. The true answer, however, may not lie in devel-
oping error models to fully account for all error sources
in the already complex algorithms, but may lie equally
in a simpler algorithm such as the one described here,
whose sophistication is only increased when an error
model can be simultaneously constructed.

2. Algorithm framework

Conceptually, all physically based algorithms begin
by computing radiances that would be observed from a
given cloud structure. These theoretically computed ra-
diances (Tb) are then inverted to obtain the surface
rainfall corresponding to an observed radiance field.
Unfortunately, this first step is already fraught with dif-
ficulties because a typical rainfall cloud has many more
free parameters than can reasonably be modeled, let
alone retrieved. Additional constraints are needed. The

different methods used to introduce these constraints,
or a priori information, effectively describe the algo-
rithms discussed in the previous section. Nonetheless,
one can write the forward problem in symbolic form,

Tb � f�r, �i, ci�, �1�

where Tb can be a single brightness temperature or
combination of channels, r is the surface rainfall that is
being retrieved, �i is cloud and environmental param-
eters that one explicitly allows to vary in the forward
model, and ci is the cloud and environmental param-
eters that one chooses to keep fixed. One can also have
parameterizations, such as coupling the vertical liquid
water profile to the surface rainfall, but insofar as such
a parameterization is explicit, only the rainfall rate
would be considered a variable in this symbolic nota-
tion.

Within this framework, it would appear logical to
choose, in addition to the surface rainfall, parameters
that strongly affect the Tb, as do the variables in
Eq. (1), while keeping the remaining parameters con-
stant. This is done in the Wilheit et al. (1991) scheme.
The freezing level is an assumed variable because of its
strong effect on determining the column-integrated
water and thus upwelling Tb. All other variables are
kept fixed or are parameterized as a function of the
surface rainfall and freezing level. The main advantage
of the scheme is its simplicity. This simplicity, however,
also implies that the algorithm has no mechanism to
account for different storm structures that may be ob-
served.

In contrast to this simple scheme described above,
GPROF (Kummerow et al. 2001) uses CRMs to con-
struct a database of a priori precipitating clouds that
may be seen by the satellite. In this case, because each
profile is a unique entity with all parameters described
by the CRM, the profile itself must be considered a
variable. The specific characteristics of each profile rep-
resent the constant terms in Eq. (1). The main problem
with this scheme is that there is no guarantee that the
variables (CRM profiles) fully characterize the ob-
served space of profiles and that the constant terms (the
profile characteristics) are correct. The first problem is
generally referred to as the completeness problem. The
latter is related to errors in the CRMs themselves and
can be referred to as the correctness problem. In short,
the GPROF scheme avoids the lack of flexibility that is
inherent to the simple emission schemes. In exchange,
however, it introduces two assumptions—the complete-
ness and the correctness of the CRM profiles—that are
both very difficult to validate.
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The error algorithm

The error algorithm described here is a hybrid be-
tween the simple emission scheme described by Wilheit
et al. (1991) and GPROF, which is a cloud model–based
Bayesian scheme described by Kummerow et al. (2001).
It uses the simple physical relation between observed
increases in the 19-GHz Tb, but in the statistical
framework of GPROF in order to take advantage of
the simple uncertainty model afforded by that scheme.
Unlike GPROF, however, the a priori database is
constructed directly from the TRMM precipitation
radar (PR) rainfall product (Iguchi et al. 2000), version
5. To the extent that the TRMM PR captures spatial
and temporal changes in cloud properties, these varia-
tions in the a priori database can be explicitly exam-
ined. Experiments described in section 3 demonstrate
that this procedure also eliminates the “completeness”
problem. The “correctness” problem is not eliminated
by this a priori database, but a careful analysis of
potential errors in the TRMM PR products used to
construct the database allows these errors to be quan-
tified.

Construction of the a priori database begins by iden-
tifying 7 � 11 TRMM PR pixels that fully encompass
the 19-GHz field of view (FOV) corresponding to the
51st and 54th TMI pixels along each scan line. These
pixels were selected in order to remain near the center
of the scan (where TRMM PR vertical resolution is
optimal), while avoiding the excessive overlap of the
52nd and 53rd pixel positions. A mean brightband
height is identified within each TMI FOV by averaging
brightband height information provided by the PR pix-
els within the 19-GHz FOV. If no PR pixel contains a
bright band, the search area is expanded successively to
17 � 21, 27 � 31, and finally 49 � 51 PR pixels. If no
bright band is found, a climatological brightband height
is assigned to these pixels based upon the observed sea
surface temperature. Only 7% of the rain falls in this
category.

The vertical rain profile is taken from the TRMM PR
standard rainfall product. The rain rate is considered
liquid from the surface to three layers (750 m) below
the layer containing the bright band, while snow is con-
sidered from the top of the reflectivity profile to one
layer (250 m) above the layer in which the bright band
was found. These definitions are consistent with the
TRMM PR rain algorithm. Between the rain and snow
layers, there are four TRMM PR layers that may con-
tain the bright band itself. The TRMM PR rainfall in
these layers is not used because they may be contami-
nated by the bright band itself. Instead, this region is
filled by linearly interpolating the liquid and snow-

water content within the melting layer. No partially
melted particles are considered.

The relations needed to convert rain rate to liquid
and snow-water content from the TRMM PR rainfall
product can be reconstructed from relations presented
by Iguchi et al. (2000) and Masunaga et al. (2002). In-
stead of the five separate levels described in those stud-
ies, only the lowest level (for liquid) and highest level
(for snow) discussed in those studies are used here.
Specifically, the relations for convective and strati-
form rain (as defined in the standard TRMM PR prod-
ucts) are Mconv,liq. � 0.074 R0.87, Mstrat,liq. � 0.064 R0.89,
Mconv,snow � 0.217 R0.91, and Mstrat,snow � 0.196 R0.92.
While the operational TRMM PR algorithm adjusts
these relationships when the path-integrated attenua-
tion (PIA) derived from the PR is deemed reliable, this
adjustment is not done here in order to keep the rela-
tions as simple as possible. The “others” category de-
fined by the TRMM PR algorithm has the same coef-
ficients as the convective rain for these two levels and is
thus treated as convection. The above technique places
hydrometeors in 250-m layers in each of the 7 � 11
columns of the TRMM PR. For computational effi-
ciency, and because of the lack of sensitivity of the
19-GHz radiances to small ice, the hydrometeor pro-
files are only extended to 40 layers (10 km) above the
surface.

In addition to the hydrometeor concentrations, sur-
face conditions as well as any cloud water and water
vapor must be specified in order to simulate the up-
welling radiances. The sea surface temperature (SST)
was taken from the 3-day-averaged SST available from
Remote Sensing Systems (see information online at
http://www.ssmi.com). Wind speed was also obtained
from the 3-day-averaged surface wind computed by Re-
mote Sensing Systems. While the wind field is not di-
rectly related to the wind during the time of the pre-
cipitation event, it should provide a realistic distribu-
tion of surface winds. The remaining parameters
needed for the atmospheric model are all assumed con-
stant and are supplied by the algorithm. The tempera-
ture profile is assumed to follow a constant lapse rate of
6 K km�1 using the layer above the bright band [freez-
ing level (FL)] as the 0°C isotherm. Pressure is com-
puted using the hydrostatic equation with the surface
pressure set at 1013 mb. Cloud water and water vapor
are assigned based upon the pixels’ rain status. If the
pixel is raining, 0.5 kg m�2 of cloud water is assigned to
the pixel. Following Wilheit (1986), the cloud water is
distributed in the two layers (500 m) below the freezing
level. If the pixel is not raining, but is adjacent to rain,
0.2 kg m�2 of cloud water are assigned and distributed
as before. The remaining pixels are assigned no cloud
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water. The relative humidity follows the cloud water
scheme. It is assumed 80% at the surface, increasing to
100% in the cloud layer and then decreasing 10% km�1

above the freezing level. When no clouds are present,
the relative humidity is kept constant at 80% up to the
freezing level and then decreases by 10% km�1 as with
the raining pixels.

The above profiles (at TRMM PR spatial resolution)
are used to compute brightness temperatures using the
Eddington approximation (Kummerow 1993). In the
Eddington solution, diffuse radiances are computed
first. Plane-parallel theory is used for this. The plane-
parallel diffuse radiance is then used in conjunction
with a ray-tracing method to account for the actual ge-
ometry of the cloud. This solution is generally referred
to as the slant-path approximation. While not exact, the
technique captures the horizontal variability quite well
(Roberti et al. 1994). The Tbs computed at the TRMM
PR resolution (�4 km) are then convolved with the
TMI antenna gain functions to obtain the TMI 19-GHz
computed brightness temperatures. In a slight deviation
from the Wilheit et al. (1991) scheme, the current al-
gorithm uses the Tb difference at 19 GHz (i.e., Tb �
Tb19V � Tb19H) to ensure that the function is always
monotonic.

Differences between observed and computed Tbs
can now be compared and are shown in Fig. 2 as a
function of rainfall rate (as given by the TRMM PR).
Ideally, Fig. 2 should be a horizontal line with zero bias
and small random variations. This, however, would
only be true if all of the assumptions stated earlier are
correct and the TRMM PR rainfall is fully consistent
with TMI observations. This is clearly not the case, with
deviations up to 5 K for the lightest rain-rate bin. For
low FOV-averaged rainfall rates (less than 0.25 mm
h�1), TRMM PR rainfall is not sufficient to signifi-
cantly alter the Tb. The cloud water and water vapor
assumptions appear to lead to excess attenuation that in
turn leads to lower computed than observed Tb. Dif-
ferences could also be attributed to a bias in the wind
speed that must be interpolated from nearby rain-free
pixels. At moderate rainfall rates (0.25–4 mm h�1), the
observed Tb indicate more attenuation than the com-
puted Tb. This could be a result of insufficient cloud
water and water vapor, or the result of neglecting melt-
ing hydrometeors. It could also be attributed to an un-
derestimation of rainfall by the TRMM radar. The bias
reverses again for very high FOV-averaged rainfall
(�32 mm h�1), which could be because of an overesti-
mation of rainfall by the TRMM PR but may also be

FIG. 2. Statistics of computed minus observed Tb, defined as Tb19V � Tb19H, for all database
pixels created from Dec 1999 data. The height of the vertical bars corresponds to the standard
deviation about the mean, while the width of the bars represents the relative contribution of
each rain rate interval to the total rain. The rainfall for each pixel is taken to be the TRMM
PR surface rainfall.
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caused by some ice scattering effects at these high rain-
fall rates.

Assumptions could be changed to achieve better
agreement between computed and observed Tbs. Be-
cause there are virtually no data to constrain the as-
sumptions, however, they were not modified and the a
priori database was constructed with the stated assump-
tions for nonraining parameters as well as TRMM PR
rainfall. Three months, December 1999, January 2000,
and February 2000 (henceforth called DJF 1999–2000),
were used to construct the a priori database used for
most of this study. To look at temporal changes, two
additional databases covering DJF 1997–98 and DJF
1998–99 were constructed to contrast the weak La Niña
year (1999–2000) with strong El Niño (1997–98) and
La Niña (1998–99) years. Using only two TMI pixels
per scan, each DJF period generates approximately
650 000 raining profiles for use in the database.

In addition to the raining pixels in the database, a
second database is created to determine the probability
of rain for each pixel as a function of Tb and SST. For
simplicity, the present scheme uses observed Tb in con-
junction with TRMM PR-determined rain/no-rain in-
formation to construct this database with 1-K intervals
in both Tb and SST.

The retrieval algorithm itself is straightforward. For
each observed Tb and SST, the rain/no-rain database is
searched first to establish the probability of whether the
pixel is raining. If rain is possible, the raining database
is searched to find all entries having Tb and SST within
2.2 and 3 K, respectively. All entries within this interval
are given equal weight in the final solution. The 2.2-K
uncertainty in Tb is made up of an uncertainty of 1 K
for the sensor noise and 2 K for uncertainties in the
radiative transfer computations. The latter is consistent
with radiative transfer uncertainties at 19 GHz pre-
sented in Smith et al. (2002). A 3-K uncertainty was
used for SST because it comes from a 3-day average
rather than the pixel itself. Results showed very little
sensitivity if uncertainties were changed by 	1 K for
either parameter.

Figures 3a and 3b compare the resulting rainfall ac-
cumulations from the above algorithm for December
1999 with the latest operational version of the GPROF
algorithm [version 6 (V6)] being utilized by the TRMM
project. Both rainfall and rain/no-rain databases from
the same time period were used in the retrieval. The
corresponding zonal mean rain accumulations are
shown in Fig. 3c. As can be seen, there is generally good
agreement in the Tropics but the error algorithm pro-
duces more rain outside of 30° latitude, particularly in
the Southern Hemisphere. This leads to somewhat

greater overall accumulations (2.76 mm day�1 for the
error algorithm versus 2.60 mm day�1 for GPROF V6).

This example is used merely to illustrate that reason-
able monthly rainfall accumulations can be obtained
from this simple 19-GHz emission algorithm. Little
weight should be given to the overall agreement with
the operational algorithm because the absolute magni-
tude of the error algorithm can be modified through the
somewhat arbitrary assumptions related to cloud water,
water vapor, the melting level, and drop size distribu-
tion (DSD) assumptions detailed in the previous sec-
tion.

3. Algorithm uncertainties

The motivation of the above algorithm, as stated ear-
lier, was not to develop yet another rainfall product, but
to instead develop a simple algorithm that is amenable
to the development of a complete error model. Given
the complexities of such an error model, a simple algo-
rithm is convenient. To that end, the probabilistic meth-
odology selected for the algorithm can immediately be
used to derive the uncertainty related to the inversion
methodology. Statistics, which reflect the variability of
solutions found within the 2.2-K rms specified in the
retrieval as a function of the retrieved surface rainfall,
are presented in Fig. 4. The rainfall is again based on
December 1999 TMI data. For this figure, the 3-month
database for DJF 1999–2000 was used. The rain rate is
the conditional rain rate. The probability of rain for
each rain-rate interval is therefore also presented.

Uncertainties, as a percent of rainfall, are generally
greatest for low rainfall rates as seen in Fig. 4. At these
light rainfall rates, the Tb signal at 19 GHz is very weak
and can be confused with uncertainty in the observed
Tb or SST. Minimum uncertainties are found in the
2–10 mm h�1 range. Above 10 mm h�1, uncertainties
again increase because of saturation of the Tb signal.
Relatively little rain (
18%) falls at this high rain-rate
category. These results are consistent with the random
errors reported by L’Ecuyer and Stephens (2002), for
the TRMM operational algorithm.

The inversion uncertainties are easily computed in a
statistical algorithm framework. They are, unfortu-
nately, not the only error sources. Errors in the a priori
database itself cannot be ignored. These errors result
when the a priori database is either not correct, not
complete, or contains spatial and/or temporal variabil-
ity that cannot be resolved by the algorithm itself.
These sources of uncertainty are treated individually in
the following subsections. The final source of uncer-
tainty, addressed in section 3d, is the result of algorithm
formulation errors. This category consists of any errors
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FIG. 3. Comparison between (a) the TRMM operational GPROF radiometer product (3A12), and (b) the current
error algorithm applied to Dec 1999 with the DJF 1999–2000 database. (c) Zonal mean rain accumulations for the
two products.
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that could exist in the code itself, any errors in the
assignment of assumed parameters discussed in section
2, as well as the constant formulation of parameters that
may have large space/time variability in nature. These
cannot be quantified by the satellite and require inde-
pendent validation data. While this is beyond the scope
of this paper, a discussion aimed at defining an ap-
proach to evaluating these potential errors is nonethe-
less included in section 3d.

a. Correctness of the a priori database

The TRMM PR operational rainfall product (2A25,
version 5) was used to construct rainfall profiles. These,
along with some constant parameters defined in section
2, plus radiative transfer computation, were used to cre-
ate the a priori database. The constant parameters de-
scribed in section 2 are intended to represent mean
assumptions. Here, the uncertainties introduced by im-
perfect TRMM PR data are examined.

Ideally, one would run the TRMM PR operational
algorithm with various DSD assumptions to assess the
extent to which the mean TRMM PR rainfall results are
uncertain. Because of the complexity of the operational
TRMM PR algorithm, however, this proved unfeasible.
Instead, this section examines the sensitivity of the cur-
rent retrieval algorithm to systematic changes in the
TRMM PR output. Because any errors in the shape of

the rain profile must be coupled to the integrated liquid
water retrieved by the TRMM PR through the DSD
assumption, however, sensitivity tests were only con-
ducted to quantify the changes in the retrieved rainfall
as a function of changes in the integrated TRMM PR
rainwater content. To first order, this is intended to
represent changes in the retrieved profile if DSDs could
be changed. This procedure, while far from perfect, is
nonetheless illustrative for this first attempt at con-
structing a complete error model. December 1999 was
used to construct the baseline and modified databases
used in these experiments. This represents approxi-
mately 220 000 raining pixels. December 1999 was also
used to assess the retrieval sensitivity.

For these experiments, the TRMM PR rainfall is
modified throughout the rain column by a fixed per-
centage in the range of 	20%. This is a reasonable
uncertainty in the global products dictated by the global
mean energy budget uncertainties (Kiehl and Tren-
berth 1997). Table 1 lists the results from these experi-
ments as a percentage of change from the baseline al-
gorithm. If the percentage remains near 0%, then there
is no sensitivity to errors in the a priori rainfall rate
prescribed by the TRMM PR. If the percentage follows
the percentage change in the TRMM PR product, then
the algorithm has no skill and simply reproduces any
errors in the a priori database. The five rain-rate cat-
egories shown in Table 1 were selected to each contain

FIG. 4. Inversion uncertainties related to the nonuniqueness in the Tb to rainfall relation.
The uncertainties are conditional upon the pixel having rain. The average probability is also
shown between 0% and 100%, with values labeled on the right side of the plot.
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approximately 20% of the total rainfall. The exact frac-
tions are provided in the table.

Results from Table 1 indicate that the uncertainty in
the radiometer algorithm is approximately 22% of the
uncertainty in the TRMM PR rainfall, or 5% for an
uncertainty of about 20% in the TRMM PR global
mean rainfall. This uncertainty comes primarily from
low rainfall rates where the 19-GHz channels appear
insensitive to actual changes in the rain. A future re-
finement of the algorithm could use higher frequencies
as proposed by Hong et al. (1997) to reduce this sensi-
tivity to uncertainties in light rainfall. Here, however,
the aim is not to immediately improve the algorithm,
but rather to explicitly quantify the uncertainties of the
current formulation. A 5% uncertainty is therefore
used for database correctness issues.

b. Completeness of the a priori database

Incomplete databases have long been speculated to
be a significant source of uncertainty in retrieval
schemes relying on CRMs for their a priori databases.
These cloud models are difficult to run and to date only
a handful of state-of-the-art simulations are available
for retrieval algorithms (Kummerow et al. 2001). Be-
cause the TRMM PR-generated databases can be made
extremely large, this source of uncertainty can be in-
vestigated directly for the error algorithm considered
here. Comparisons with progressively smaller database
subsets suggests that results are stable to the 1% level
down to approximately 2000 entries when compared to
the benchmark database from DJF 1999–2000, contain-
ing 666 713 entries.

An alternative approach to assessing database com-
pleteness is to evaluate the expected uncertainty result-
ing from a finite number of database entries that match
a given set of observations. The best estimate for rain-
fall is given by the mean value of all database entries
fitting the observations (Tb and SST in the baseline
error algorithm). The retrieval uncertainty, or standard
deviation �inversion, is simply the average deviation of
the individual database entries fitting the observation
vector. Likewise, the average uncertainty in the final

solution, the standard deviation of the mean, is simply
given by �inversion/(n)1⁄2, where n is the total number of
database entries that match the observation vector. As
a way of illustrating this result, a pixel with a Tb of 30 K
and an SST of 300 K is considered. The uncertainty in
the input variables is, as before, namely 	2.5 K for the
Tb and 	3 K for the SST. Using the full database for
December 1999, the retrieval yields 3.15 	 1.38 mm h�1,
having found 10 152 database entries that match the
observation vector within the specified uncertainty.
The retrieval uncertainty is 44%. If database complete-
ness errors of less than 1% are sought for this pixel,
then approximately 2000 (i.e., 442) database entries fit-
ting the above observations are required in this ex-
ample. At the 10% level, only 20 observations are
needed. Results from a retrieval using subsets of the
complete database are shown in Table 2 to confirm
these predictions.

The mean and standard deviation of the retrieved
rainfall begin to deviate by approximately 1% as the
number of database entries fitting the observations de-
creases to 2550 in agreement with the predictions. Er-
rors increase to 10% for somewhat fewer than 40 da-
tabase entries, also in general agreement with predic-
tions.

Database completeness errors are well below the 1%
threshold for the algorithm presented here. They could

TABLE 1. Net bias in retrieved rainfall resulting from specified error in the TRMM PR volumetric rainfall.

Percent
rain TRMM PR � 20% TRMM PR � 10%

TRMM
PR TRMM PR � 10% TRMM PR � 20%


1 mm h�1 20.3 �6.1% �3.2% 0% �3.2% �6.6%
1–3 mm h�1 20.2 �3.7% �2.1% 0% �2.4% �5.3%
3–6 mm h�1 22.7 �2.6% �1.1% 0% �2.1% �3.5%
6–10 mm h�1 19.1 �3.9% �2.5% 0% �2.9% �7.4%
�10 mm h�1 17.6 �6.1% �2.4% 0% �0.3% �0.6%
Total 100.0 �4.3% �2.1% 0% �2.1% �4.6%

TABLE 2. Sensitivity of retrieved rainfall as a function of
database entries matching a set of observations.

Database
entries

Matching entries
(Tb � 30 	 2.5 K;
SST � 300 	 3 K)

Rainfall
(mm h�1)

666 713 10.152 3.15 	 1.38
333 356 5128 3.15 	 1.38
166 679 2550 3.15 	 1.41

83 339 1256 3.17 	 1.38
41 669 605 3.13 	 1.41
20 834 294 3.09 	 1.49
10 417 148 3.11 	 1.45

5208 86 3.23 	 1.68
2604 43 3.42 	 2.03
1302 22 3.86 	 2.67

JANUARY 2006 K U M M E R O W E T A L . 31



become important, however, if the algorithm is modi-
fied to include additional constraints. In addition, there
is the possibility that the TRMM PR solutions used to
construct the a priori database do not fully cover the
range of possible solutions. Because the lower thresh-
old of the TRMM PR (0.5 mm h�1) is very low when
averaged over the much larger radiometer FOV, and
the upper threshold of the TRMM PR (when the echo
is completely attenuated) has not occurred in the
TRMM data, these issues were considered unimportant
in this study. In the next section, an additional spatial
constraint is added to test the algorithm’s sensitivity to
spatial variations in the a priori database. Additional
constraints can also be added if additional Tbs, or geo-
physical parameters, such as the wind speed or freezing
level, are added as part of the observation vector.

c. Space/time dependence of the a priori database

Random errors related to the inversion can be re-
duced by standard statistical methods when space and
time averages are considered and errors are assumed
uncorrelated. Errors, however, are not uncorrelated.

Indeed, Fig. 1 clearly identifies temporal biases across
the Pacific that could not exist if all errors were as-
sumed random. Instead, Fig. 1 suggests that cloud prop-
erties change systematically across the Pacific basin as a
function of still uncertain regime changes.

The sensitivity of the error algorithm to regional and
temporal changes in cloud properties can be investi-
gated by constructing independent databases for sepa-
rate time periods and locations. Ideally, the retrieval
would be insensitive to the details of when and where
the database was created as long as it has enough en-
tries to represent a stable solution. The first experi-
ment, therefore, is to compare the rainfall retrieved for
December 1999 from three distinct databases corre-
sponding to DJF 1997–98, 1998–99, and 1999–2000, re-
spectively. Because each database is associated with a
rain probability lookup table from its own time period,
the sensitivity of the retrieval to changes in these tables
is also examined. Figure 5a shows zonal mean rainfall
accumulations using the three distinct databases with
their corresponding rain probability tables. The El
Niño database (DJF 1997–98) yields only 74.9 mm

FIG. 5. Zonal mean rainfall accumulation for Dec 1999 using three distinct databases created for DJF
1997–98, 1998–99, and 1999–2000. (a) Uses the corresponding rain/no-rain lookup tables created for each
of the time periods; (b) uses the rain/no-rain lookup table from DJF 1999–2000 for all three retrievals.
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month�1 for December 1999, while the La Niña data-
base yields 83.0 mm and the reference database (DJF
1999–2000) yields 88.7 mm as before. Based upon this
very limited comparison, the retrieval algorithm can be
assigned an uncertainty on the order of 15% in the
global rainfall resulting from interannual variability of
the cloud population. Figure 5b shows the equivalent
results, but using the DJF 1999–2000 rain probability
lookup table in conjunction with each of the three rain
databases. Results here are somewhat better. The El
Niño database now yields 79.2 mm, while the La Niña
database yields 83.6 mm. The reference is unchanged
by this experiment. This represents roughly a 5% re-
duction in the uncertainty. From this, we estimate that
approximately 1/3 or 5% of the overall uncertainty is a
result of changes in the rainfall probability table; the
remaining 2/3 or 10% are a result of changes in the rain
databases themselves.

To test the algorithm sensitivity to spatially subsetted
databases, the retrieval algorithm is modified slightly.
For this study, additional weight is given to pixels based
upon the physical distance between the location of a
pixel and the location of the database entries that fit the
observations. A Gaussian function with a half-width of
2000 km is used to ensure that instabilities are not in-
troduced because of insufficient database entries. The
retrieved rainfall accumulation for December 1999 us-
ing the entire DJF 1999–2000 database is 2.77 mm
day�1, the regionally constrained retrieval yields 2.68
mm day�1. The accumulation maps appear quite similar
and are therefore not shown. To highlight the regional
differences, Fig. 6 directly compares the 2.5° � 2.5°
accumulations from the two methods. Overall, uncer-
tainties resulting from regional variations in the a priori
database lead to approximately 10% uncertainty in the
monthly accumulation when compared at a 2.5° grid
scale.

Differences of the order of 10%–20% related to spa-
tial and temporal changes in cloud properties are not
limited to the error algorithm described here. Differ-
ences of this magnitude and larger are also clearly evi-
dent in many of the products compared as part of the
third Precipitation Intercomparison Project (PIP-3)
presented by Adler et al. (2001). In the case of the error
algorithm, however, the source of the regional and tem-
poral variations can be traced directly to the algorithm
formulation. The variable terms in Eq. (1), while not
explicitly enumerated earlier, are related to differences
in TRMM PR-derived rainfall characteristics within
each TMI FOV. These variables are denoted here as
“database variables.” Their seasonal and temporal
variations must be responsible for regional and tempo-
ral differences in the output product, because all other

parameters were specifically held constant in the for-
mulation of the error algorithm.

Variations of TRMM PR-derived rainfall within a
single 19-GHz FOV cannot fully be described with only
a few parameters because details of the vertical profile
and the relative position of individual TRMM PR pixels
within the larger TMI FOV both affect the upwelling
TMI radiances. Nonetheless, it may be reasonable to
assume that variation can be represented by 1) the
mean FL, defined as the mean height of the layer above
the bright band; 2) the rainfall inhomogeneity (�R),
computed as the standard deviation of the TRMM PR
rain pixels with the 3-dB gain of the TMI FOV divided
by the mean rainfall in the TMI FOV; 3) the mean slope
(slope) of the rainfall profile within the radiometer
FOV as computed by finding the best-fit line passing
through the surface rainfall to the top of the rain only
layer; and 4) the surface wind speed. These four param-
eters represent the database variables and were added
to the a priori database during its construction. System-
atic changes in these properties, which the current al-
gorithm does not independently retrieve, can then be
hypothesized to be responsible for the regional and sea-
sonal changes in the output product.

An illustrative example is used to verify this asser-
tion. A Tb difference of 30 K with an SST of 300 K is
used. For this example, the FL is assumed to be 4500 	
200 m, the slope is �10 	 10% km�1, and the rainfall
variability is assumed to be 3 	 0.5. In general, wind
statistics do not change much from one region to an-
other at monthly time scales. As such, surface wind

FIG. 6. Comparison of the retrieved rainfall accumulations for
Dec 1999, using the complete DJF 1997–2000 database vs the
same database but with additional regional constraints. Differ-
ences between the two products represent 2.5° areas.
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speed is unlikely to cause regional and temporal biases
at these time scales. Unconstraining the wind speed did
not cause errors in excess of 1% for any of the simula-
tions performed. As such, wind is not included to en-
sure that sufficient database entries were available to
obtain robust statistics. The retrieval is run first using
the three DJF databases without additional information
related to the database variables. The unconstrained
retrieval yields 2.62 	 1.31, 3.00 	 1.36, and 3.15 	 1.39
mm h�1 for databases constructed from DJF 1997–98,
1998–99, and 1999–2000, respectively. When the re-
trieval is constrained by the three additional database
variables presented above, results are 3.21 	 0.74, 3.26
	 0.67, and 3.23 	 0.71 mm h�1 for the three databases,
respectively. The constrained retrieval is seen to be
very consistent for the three databases, reducing the
interannual variability from approximately 15% for
the unconstrained retrieval to a mere 1%–2% when the
database variables are explicitly supplied to the algo-
rithm. Random errors are also smaller as would be ex-
pected for a more highly constrained inversion. As seen
in the previous section, however, a larger reference da-
tabase is also required if stability is to be guaranteed at
the 1% level.

The above experiment can also be performed to as-
sess regional variations in the constrained and uncon-
strained retrievals. For this experiment, the same geo-
graphical constraint as before is used, but 2.5° monthly
accumulations are compared as each database variable
and combination of variables are constrained. The re-
trieval is run only for TMI pixels that have coincident
radar data, and the constraint is taken directly from
TRMM PR observations. Results are presented in
Table 3 for all pixels as well as tropical (�15° 
 lat 

15°) and extratropical (|lat| � 25°) pixels.

Global results show a mean difference of 12% for the
unconstrained retrieval. This is consistent with results

shown in Fig. 6. Of the three database variables, know-
ing the FL is seen to have the greatest impact—
reducing the mean uncertainty to 4.0%. The spatial
variability alone reduces the uncertainty to 7%, while
knowledge of the slope of the rainfall profile seems to
reduce errors only marginally. Combinations of vari-
ables show consistent trends. Knowledge of the FL and
rainfall variability reduces errors to 2.4%. Adding in-
formation on the slope fails to further reduce the un-
certainty. In all of these experiments, the effect of the
rain/no-rain database could be reduced to approxi-
mately 1% if SST is assumed known to 1 K.

For the tropical subset, the overall uncertainty is re-
duced by a factor of 2, but the relative contributions of
the three database variables are quite similar to the
global results. For the extratropical subset the unknown
FL is seen to be the dominant source of uncertainty.
This is consistent with the expectation that freezing lev-
els are much more variable in the extratropics than they
are in the Tropics.

d. Uncertainties resulting from algorithm
formulation

Up to this point, the errors have focused on uncer-
tainties introduced by inversion methodology as well as
errors in the TRMM PR-derived rainfall, database
completeness issues, and regional and seasonal changes
in the formulation variables. No mention has been
made of errors in the algorithm formulation itself. This
could consist of a poor formulation of any of the as-
sumptions detailed in section 2. Clearly, there is evi-
dence for excess extinction in the bright band (e.g.,
Bauer et al. 2000; Olson et al. 2001; Battaglia et al.
2003) that represents a potential error of omission in
the current formulation. Yet, even a perfect reformu-
lation of the brightband extinction would do nothing to
reduce the uncertainties as examined in any of the pre-
vious sections. These additional errors, termed algo-
rithm formulation errors, are included in both the da-
tabase and inversion, and must therefore be quantified
using independent measurements.

Traditional validation efforts have generally been
limited to long-term comparisons between satellite- and
ground-based rainfall. Over a sufficiently long time, this
procedure eliminates the random errors from the com-
parison. Done indiscriminately, however, such proce-
dures ignore the effect of the database variables, which
can be responsible for 10%–15% regional/seasonal bi-
ases explored in the previous section. Instead, it seems
necessary to adopt a physical validation paradigm that
explicitly accounts for the cloud properties at the par-
ticular validation site. In this latter paradigm, a critical

TABLE 3. Difference (%) between mean 2.5° rain retrieval using
a global vs a regional database as a function of additional con-
straints added to the retrieval. “Tropical” refers to latitudes be-
tween 15°, while “extratropical” refers to latitudes between 25°
and 30°.

Constraints

Global Tropical ExtratropicalVariability Slope FL

— — — 12.0% 6.5% 19.2%
Yes — — 6.8% 4.2% 10.3%
— Yes — 10.7% 5.9% 17.3%
— — Yes 4.0% 3.6% 4.5%

Yes Yes — 6.3% 4.2% 9.3%
Yes — Yes 2.4% 2.2% 2.5%
— Yes Yes 3.5% 3.2% 3.8%

Yes Yes Yes 2.4% 2.2% 2.2%
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first step is to correctly identify and account for all the
database variables.

In the case of the simple error algorithm presented
here, the database variables can all be observed directly
by TRMM PR. They can, however, also be observed at
well-designed validation sites and added to the retrieval
as additional constraints similar to what was done in the
previous section. Using the validation site to observe
the database variables allows comparisons to be made
for any microwave radiometer instead of just TMI over
the narrow swath that overlaps the TRMM PR sensor.
The constrained algorithm, run at a small number of
validation sites, should show only the 2%–3% residual
regional and temporal variability found in the previous
section. Biases beyond 3%, used to denote the accuracy
of the constrained retrieval, must then be ascribed ei-
ther to biases in the PR-derived rainfall, as outlined in
section 3a, or to incorrect values in the constant terms
defined in section 2. If the errors exceed the possible
errors introduced by overall PR biases, then the errors
are labeled as formulation errors.

Because the final error model must include possible
formulation errors, the outlined validation activity is
seen as a critical component to this effort. Without it,
only those variables explicitly included in the database
can be accounted for and the error model loses its
quantitative foundation. Accomplishing this task re-
quires a flexible validation strategy that can measure
the surface rainfall, verify that the uncertainty in the
input data (Tb and SST in the present case) are cor-
rectly specified, measure database variables, and ob-
serve the constant parameters to see whether residual
errors are larger than the predicted values. While such
an activity is well beyond the scope of this paper, it is
highlighted in order to stress that a full error model
must indeed account for all sources of error and not
merely those deemed tractable in the algorithm formu-
lation.

4. Summary and conclusions

A very simple microwave radiometer algorithm using
only the Tb difference at 19 GHz (Tb � Tb19V �
Tb19H) and the SST was developed in order to establish
a framework for end-to-end error modeling. In addition
to the inversion uncertainty, three sources of uncer-
tainty were identified related to the a priori database
used by the retrieval algorithm. The first is the result of
uncertainties in the TRMM PR rainfall used to estab-
lish the a priori database database. Results indicated that
the rain information in the radiometer brightness tem-
peratures could reduce errors in the TRMM PR-
derived rainfall used in the a priori database by a factor

of 4, or approximately 5%, if the TRMM PR is assumed
to be uncertain at the 20% level. A more transparent
TRMM PR rain algorithm that directly couples rain
intensity to the shape of the rain profile through uncer-
tainties in the DSD assumption was discussed as a pos-
sible method to verify this result more rigorously.

The second source of uncertainty was related to da-
tabase completeness issues. It was shown that the algo-
rithm, as formulated for global retrievals, should have
no discernable errors resulting from the database size if
the reference database is used. The completeness error
complete can safely be set to zero in the case that each
DJF database contains approximately 600 000 entries.
If the algorithm is modified to include additional input
data, or the uncertainty in the input data is reduced, the
completeness issues can be reexamined considering
both the inversion uncertainty as well as the number of
entries found in the database for any specific set of
input parameters.

The third source of errors was related to the tempo-
ral and regional variations in the a priori database that
were not resolved by the retrieval algorithm. These er-
rors were defined as space/time, and were found to be
approximately 15% for temporal variations and 10%
for regional variations examined at 2.5° resolution. Be-
cause the temporal variations were quantified using
DJF for an El Niño, a La Niña, and a weak La Niña
year, the seasonal variability is likely to represent an
upper bound. The regional variability, examined using
a composite DJF 1997–2000 database showed an addi-
tional 10% uncertainty. Together, these two terms may
be estimated to contribute 25% uncertainty to the over-
all solution. It was shown that better constraints on
SST, rain variability, and FL could be used to reduce
this number quite significantly. Algorithms developed
specifically to retrieve the FL, such as that developed
by Wilheit et al. (1991), could be used to reduce the
current uncertainty.

Finally, possible algorithm formulation errors were
considered. These errors formulation were not quantified
here because they required independent validation data
for which the TRMM PR sensor cannot be used. In-
stead, a physical validation paradigm was outlined that
explicitly accounts for the database variables before av-
eraging satellite and ground observations.

As long as the error sources are assumed indepen-
dent, it is relatively straightforward to sum the different
sources into a final uncertainty,

�total � ��N�1�2�inversion�2 � �correctness�
2 � ��concept�

2

� ��space�time�2 � ��formulation�2�0.5,
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where N is the number of independent samples used in
any rain accumulation. Clearly, the inversion errors will
dominate any uncertainties at the pixel level. Unless
the formulation errors turn out to be comparable to the
random errors, the latter may be used as a good esti-
mate of the total error. At time and space scales that
are important for climate studies, the number of inde-
pendent pixels N becomes large and the inversion er-
rors disappear. If the algorithm is again assumed to
have no formulation errors, then the measurement un-
certainty for monthly rain accumulations over 2.5°
areas can be estimated from correctness � 5% and
space/time � 25%. This yields a total error of total �
26%, which is of course very large for uncertainties
related to climate scales. The large value, however, is
perhaps simply a reflection of the simple algorithm
used here. At intermediate space and time scales, ad-
ditional information regarding the time and space cor-
relations of the variable parameters will be necessary to
estimate the true number of independent samples.
These, and already mentioned issues and complexities
raised in the paper, however, make it clear that signifi-
cant additional effort will be required before error
modeling achieves the same maturity as retrieval algo-
rithms have. This work is ongoing.
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