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ABSTRACT

While a large number of methods exist in the literature for retrieving rainfall from passive microwave
brightness temperatures, little has been written about the quantitative assessment of the expected uncer-
tainties in these rainfall products at various time and space scales. The latter is the result of two factors:
sparse validation sites over most of the world’s oceans, and algorithm sensitivities to rainfall regimes that
cause inconsistencies against validation data collected at different locations. To make progress in this area,
a simple probabilistic algorithm is developed. The algorithm uses an a priori database constructed from the
Tropical Rainfall Measuring Mission (TRMM) radar data coupled with radiative transfer computations.
Unlike efforts designed to improve rainfall products, this algorithm takes a step backward in order to focus
on uncertainties. In addition to inversion uncertainties, the construction of the algorithm allows errors
resulting from incorrect databases, incomplete databases, and time- and space-varying databases to be
examined. These are quantified. Results show that the simple algorithm reduces errors introduced by
imperfect knowledge of precipitation radar (PR) rain by a factor of 4 relative to an algorithm that is tuned
to the PR rainfall. Database completeness does not introduce any additional uncertainty at the global scale,
while climatologically distinct space/time domains add approximately 25% uncertainty that cannot be
detected by a radiometer alone. Of this value, 20% is attributed to changes in cloud morphology and
microphysics, while 5% is a result of changes in the rain/no-rain thresholds. All but 2%-3% of this
variability can be accounted for by considering the implicit assumptions in the algorithm. Additional
uncertainties introduced by the details of the algorithm formulation are not quantified in this study because
of the need for independent measurements that are beyond the scope of this paper. A validation strategy

for these errors is outlined.

1. Introduction

Passive microwave algorithms designed to measure
precipitation can be grouped into a relatively small
number of classes depending upon the physical prin-
ciple employed. The “emission” principle exploits the
increased radiation originating from cloud and rainwa-
ter over radiometrically cold surfaces, such as the
ocean. A well-known example using 19-GHz brightness
temperatures is described by Wilheit et al. (1991) and
later by Chang et al. (1999). While conceptually simple,
emission techniques require knowledge of the freezing
level, the integrated cloud and water vapor content, and
the shape of the rainfall profile in order to relate the
integrated water observed by the radiometer to the sur-
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face rainfall. In addition, these techniques must account
for the rainfall inhomogeneity within rather large sat-
ellite fields of view [~50 km for the Special Sensor
Microwave Imager (SSM/I) and ~25 km for the Tropi-
cal Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI) and the Advanced Microwave Sounding
Radiometer (AMSR)-E] in order to properly compen-
sate for nonlinearities in the brightness temperature
(Tb) versus water content relationships. The lack of
constraints on these parameters translates directly into
large uncertainties within individual pixels.

To reduce uncertainties at the pixel level, algorithms
such as those developed by Petty (1994) and Aonashi
and Liu (2000) rely on an approach similar to that
above mentioned, but with additional frequencies used
to help constrain the problem. The additional channels,
unfortunately, do not provide any additional direct in-
formation about the surface rainfall. Instead, the addi-
tional channels are used to help describe some property
of the underlying cloud, such as its convective or strati-
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F1G. 1. Time series of TRMM operational radar (3A25) and radiometer rainfall anomalies.
The radiometer products consist of the profiling algorithm GPROF (3A12) and the emission
algorithm (3A11). Time series corresponds to oceanic rainfall between 36°N and 36°S.

form nature or whether the scene corresponds to deep
or shallow convection. This information is then used, in
conjunction with appropriate parameterizations, to bet-
ter constrain what the vertical rain profile or its hori-
zontal inhomogeneity might be. As such, these methods
can reduce the uncertainty at the pixel level, but only at
the expense of additional assumptions and parameter-
izations that must themselves be validated if a complete
error model is to be generated.

An even more complex family of algorithms is the
Bayesian approaches that employ cloud resolving mod-
els (CRMs). These algorithms are described by a num-
ber of authors (e.g., Mugnai et al. 1993; Kummerow and
Giglio 1994; Smith et al. 1994; Marzano et al. 1999;
Bauer 2001; Kummerow et al. 2001). In these methods,
the CRM outputs are coupled with radiative transfer
calculations to construct a priori databases of satellite
observables along with the cloud model hydrometeor
fields. A Bayesian or probabilistic approach is then
used to compute the most likely a posteriori distribu-
tion when constrained by the actual measurements. Un-
like the previous multifrequency approaches, these
schemes can make direct use of explicit physical mecha-
nisms contained in the CRMs to link satellite observ-
ables to the rain structure. The disadvantage of these
approaches is their susceptibility to errors in the a priori
database in terms of the accuracy of the microphysical
details provided by the CRM (e.g., Panegrossi et al.
1998), the completeness of the CRM databases, and the

fidelity with which the model outputs capture differ-
ences in climate regimes. These climate regime biases
can be difficult to observe at individual validation sites
because of the large random noise associated with in-
dividual clouds. They are, however, critical to under-
standing climate signals and trends.

One apparent manifestation of these biases is the
systematic difference in the retrieved rainfall products
from the TRMM radar and radiometers during El
Nino-Southern Oscillation (ENSO) periods (Berg et al.
2002). During ENSO both the emission scheme
(TRMM 3A11; Wilheit et al. 1991) and the cloud mod-
el-based Bayesian scheme (TRMM 2A12; described in
Kummerow et al. 2001) show marked increases in tropi-
cal oceanic precipitation that are not seen by the
TRMM radar (Robertson et al. 2003). It is unlikely that
the differences are the result of simple radiometer al-
gorithm artifacts because both the “emission”-based al-
gorithm and the Bayesian schemes show amazingly
consistent climate rainfall trends despite the different
formulations and large differences at individual storm
scales. Figure 1 shows a time series of the two TRMM
radiometric algorithms and the TRMM radar (2A25)
rainfall for tropical oceans.

Figure 1, in addition to revealing the rainfall trends
observed by the TRMM radar and radiometer algo-
rithms, also highlights the difficulties associated with
validating rainfall products. The average oceanic rain-
fall from the two radiometeric algorithms shown in Fig.
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1 differs by only 0.06 mm day'. This corresponds to
roughly 4% of their mean values. The difference be-
tween radar and radiometer rainfall during the ENSO
event of 1997/98 is only 7% of the average mean global
rainfall. At the global scale, represented by Fig. 1, these
4%-7% differences can be quite significant. These
same differences, however, are much smaller than the
10%-15% regional differences known to exist between
these products and are still smaller than most direct
comparisons between satellite- and ground-based ob-
servations.

Despite the above difficulties related to the valida-
tion of rainfall products, it is clear that algorithms de-
signed for the future must be able to fully characterize
uncertainties at any space and time scale being consid-
ered by the users. This ranges from instantaneous esti-
mates needed for many hydrologic and weather fore-
casting applications to large space and time averages
required for climate model verification and climate
trend monitoring. While the need for a full description
of uncertainties is perhaps self-evident, such a complete
error characterization does not currently exist. This pa-
per describes an algorithm designed to quantify these
both instantaneous as well as systematic errors at
longer time and space scales. To focus on errors, the
algorithm itself has been kept extraordinarily simple,
and as such is not intended to replace any of the op-
erational rainfall algorithms. For the time being, the
algorithm is also limited to oceanic areas.

With these simplifications, one may legitimately ask
whether such a scheme is appropriate to understand
uncertainties in the more complex algorithms, such as
the Goddard profiling algorithm (GPROF). While
there is certainly some information that can be gleaned
from this study, it is premature to answer this question
fully. The true answer, however, may not lie in devel-
oping error models to fully account for all error sources
in the already complex algorithms, but may lie equally
in a simpler algorithm such as the one described here,
whose sophistication is only increased when an error
model can be simultaneously constructed.

2. Algorithm framework

Conceptually, all physically based algorithms begin
by computing radiances that would be observed from a
given cloud structure. These theoretically computed ra-
diances (Tb) are then inverted to obtain the surface
rainfall corresponding to an observed radiance field.
Unfortunately, this first step is already fraught with dif-
ficulties because a typical rainfall cloud has many more
free parameters than can reasonably be modeled, let
alone retrieved. Additional constraints are needed. The
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different methods used to introduce these constraints,
or a priori information, effectively describe the algo-
rithms discussed in the previous section. Nonetheless,
one can write the forward problem in symbolic form,

Tb = f(r, v, c,), (1)

where Tb can be a single brightness temperature or
combination of channels, r is the surface rainfall that is
being retrieved, v, is cloud and environmental param-
eters that one explicitly allows to vary in the forward
model, and ¢; is the cloud and environmental param-
eters that one chooses to keep fixed. One can also have
parameterizations, such as coupling the vertical liquid
water profile to the surface rainfall, but insofar as such
a parameterization is explicit, only the rainfall rate
would be considered a variable in this symbolic nota-
tion.

Within this framework, it would appear logical to
choose, in addition to the surface rainfall, parameters
that strongly affect the Tb, as do the variables in
Eq. (1), while keeping the remaining parameters con-
stant. This is done in the Wilheit et al. (1991) scheme.
The freezing level is an assumed variable because of its
strong effect on determining the column-integrated
water and thus upwelling Tb. All other variables are
kept fixed or are parameterized as a function of the
surface rainfall and freezing level. The main advantage
of the scheme is its simplicity. This simplicity, however,
also implies that the algorithm has no mechanism to
account for different storm structures that may be ob-
served.

In contrast to this simple scheme described above,
GPROF (Kummerow et al. 2001) uses CRMs to con-
struct a database of a priori precipitating clouds that
may be seen by the satellite. In this case, because each
profile is a unique entity with all parameters described
by the CRM, the profile itself must be considered a
variable. The specific characteristics of each profile rep-
resent the constant terms in Eq. (1). The main problem
with this scheme is that there is no guarantee that the
variables (CRM profiles) fully characterize the ob-
served space of profiles and that the constant terms (the
profile characteristics) are correct. The first problem is
generally referred to as the completeness problem. The
latter is related to errors in the CRMs themselves and
can be referred to as the correctness problem. In short,
the GPROF scheme avoids the lack of flexibility that is
inherent to the simple emission schemes. In exchange,
however, it introduces two assumptions—the complete-
ness and the correctness of the CRM profiles—that are
both very difficult to validate.
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The error algorithm

The error algorithm described here is a hybrid be-
tween the simple emission scheme described by Wilheit
et al. (1991) and GPROF, which is a cloud model-based
Bayesian scheme described by Kummerow et al. (2001).
It uses the simple physical relation between observed
increases in the 19-GHz Tb, but in the statistical
framework of GPROF in order to take advantage of
the simple uncertainty model afforded by that scheme.
Unlike GPROF, however, the a priori database is
constructed directly from the TRMM precipitation
radar (PR) rainfall product (Iguchi et al. 2000), version
5. To the extent that the TRMM PR captures spatial
and temporal changes in cloud properties, these varia-
tions in the a priori database can be explicitly exam-
ined. Experiments described in section 3 demonstrate
that this procedure also eliminates the “completeness”
problem. The “correctness” problem is not eliminated
by this a priori database, but a careful analysis of
potential errors in the TRMM PR products used to
construct the database allows these errors to be quan-
tified.

Construction of the a priori database begins by iden-
tifying 7 X 11 TRMM PR pixels that fully encompass
the 19-GHz field of view (FOV) corresponding to the
51st and 54th TMI pixels along each scan line. These
pixels were selected in order to remain near the center
of the scan (where TRMM PR vertical resolution is
optimal), while avoiding the excessive overlap of the
52nd and 53rd pixel positions. A mean brightband
height is identified within each TMI FOV by averaging
brightband height information provided by the PR pix-
els within the 19-GHz FOV. If no PR pixel contains a
bright band, the search area is expanded successively to
17 X 21, 27 X 31, and finally 49 X 51 PR pixels. If no
bright band is found, a climatological brightband height
is assigned to these pixels based upon the observed sea
surface temperature. Only 7% of the rain falls in this
category.

The vertical rain profile is taken from the TRMM PR
standard rainfall product. The rain rate is considered
liquid from the surface to three layers (750 m) below
the layer containing the bright band, while snow is con-
sidered from the top of the reflectivity profile to one
layer (250 m) above the layer in which the bright band
was found. These definitions are consistent with the
TRMM PR rain algorithm. Between the rain and snow
layers, there are four TRMM PR layers that may con-
tain the bright band itself. The TRMM PR rainfall in
these layers is not used because they may be contami-
nated by the bright band itself. Instead, this region is
filled by linearly interpolating the liquid and snow-
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water content within the melting layer. No partially
melted particles are considered.

The relations needed to convert rain rate to liquid
and snow-water content from the TRMM PR rainfall
product can be reconstructed from relations presented
by Iguchi et al. (2000) and Masunaga et al. (2002). In-
stead of the five separate levels described in those stud-
ies, only the lowest level (for liquid) and highest level
(for snow) discussed in those studies are used here.
Specifically, the relations for convective and strati-
form rain (as defined in the standard TRMM PR prod-
ucts) are Moonyiiq. = 0.074 R%¥7, Mo 4iq. = 0.064 R,
M onysnow = 0217 R*?', and M aisnow = 0.196 R™.
While the operational TRMM PR algorithm adjusts
these relationships when the path-integrated attenua-
tion (PIA) derived from the PR is deemed reliable, this
adjustment is not done here in order to keep the rela-
tions as simple as possible. The “others” category de-
fined by the TRMM PR algorithm has the same coef-
ficients as the convective rain for these two levels and is
thus treated as convection. The above technique places
hydrometeors in 250-m layers in each of the 7 X 11
columns of the TRMM PR. For computational effi-
ciency, and because of the lack of sensitivity of the
19-GHz radiances to small ice, the hydrometeor pro-
files are only extended to 40 layers (10 km) above the
surface.

In addition to the hydrometeor concentrations, sur-
face conditions as well as any cloud water and water
vapor must be specified in order to simulate the up-
welling radiances. The sea surface temperature (SST)
was taken from the 3-day-averaged SST available from
Remote Sensing Systems (see information online at
http://www.ssmi.com). Wind speed was also obtained
from the 3-day-averaged surface wind computed by Re-
mote Sensing Systems. While the wind field is not di-
rectly related to the wind during the time of the pre-
cipitation event, it should provide a realistic distribu-
tion of surface winds. The remaining parameters
needed for the atmospheric model are all assumed con-
stant and are supplied by the algorithm. The tempera-
ture profile is assumed to follow a constant lapse rate of
6 K km ' using the layer above the bright band [freez-
ing level (FL)] as the 0°C isotherm. Pressure is com-
puted using the hydrostatic equation with the surface
pressure set at 1013 mb. Cloud water and water vapor
are assigned based upon the pixels’ rain status. If the
pixel is raining, 0.5 kg m 2 of cloud water is assigned to
the pixel. Following Wilheit (1986), the cloud water is
distributed in the two layers (500 m) below the freezing
level. If the pixel is not raining, but is adjacent to rain,
0.2 kg m 2 of cloud water are assigned and distributed
as before. The remaining pixels are assigned no cloud
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F1G. 2. Statistics of computed minus observed Tb, defined as Tb,9y — Tb, oy, for all database
pixels created from Dec 1999 data. The height of the vertical bars corresponds to the standard
deviation about the mean, while the width of the bars represents the relative contribution of
each rain rate interval to the total rain. The rainfall for each pixel is taken to be the TRMM

PR surface rainfall.

water. The relative humidity follows the cloud water
scheme. It is assumed 80% at the surface, increasing to
100% in the cloud layer and then decreasing 10% km ™!
above the freezing level. When no clouds are present,
the relative humidity is kept constant at 80% up to the
freezing level and then decreases by 10% km ™! as with
the raining pixels.

The above profiles (at TRMM PR spatial resolution)
are used to compute brightness temperatures using the
Eddington approximation (Kummerow 1993). In the
Eddington solution, diffuse radiances are computed
first. Plane-parallel theory is used for this. The plane-
parallel diffuse radiance is then used in conjunction
with a ray-tracing method to account for the actual ge-
ometry of the cloud. This solution is generally referred
to as the slant-path approximation. While not exact, the
technique captures the horizontal variability quite well
(Roberti et al. 1994). The Tbs computed at the TRMM
PR resolution (~4 km) are then convolved with the
TMI antenna gain functions to obtain the TMI 19-GHz
computed brightness temperatures. In a slight deviation
from the Wilheit et al. (1991) scheme, the current al-
gorithm uses the Tb difference at 19 GHz (i.e., Tb =
Tbygy — Tbygy) to ensure that the function is always
monotonic.

Differences between observed and computed Tbs
can now be compared and are shown in Fig. 2 as a
function of rainfall rate (as given by the TRMM PR).
Ideally, Fig. 2 should be a horizontal line with zero bias
and small random variations. This, however, would
only be true if all of the assumptions stated earlier are
correct and the TRMM PR rainfall is fully consistent
with TMI observations. This is clearly not the case, with
deviations up to 5 K for the lightest rain-rate bin. For
low FOV-averaged rainfall rates (less than 0.25 mm
h™!), TRMM PR rainfall is not sufficient to signifi-
cantly alter the Tb. The cloud water and water vapor
assumptions appear to lead to excess attenuation that in
turn leads to lower computed than observed Tb. Dif-
ferences could also be attributed to a bias in the wind
speed that must be interpolated from nearby rain-free
pixels. At moderate rainfall rates (0.25-4 mm h™'), the
observed Tb indicate more attenuation than the com-
puted Tb. This could be a result of insufficient cloud
water and water vapor, or the result of neglecting melt-
ing hydrometeors. It could also be attributed to an un-
derestimation of rainfall by the TRMM radar. The bias
reverses again for very high FOV-averaged rainfall
(>32 mm h™'), which could be because of an overesti-
mation of rainfall by the TRMM PR but may also be
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caused by some ice scattering effects at these high rain-
fall rates.

Assumptions could be changed to achieve better
agreement between computed and observed Tbs. Be-
cause there are virtually no data to constrain the as-
sumptions, however, they were not modified and the a
priori database was constructed with the stated assump-
tions for nonraining parameters as well as TRMM PR
rainfall. Three months, December 1999, January 2000,
and February 2000 (henceforth called DJF 1999-2000),
were used to construct the a priori database used for
most of this study. To look at temporal changes, two
additional databases covering DJF 1997-98 and DJF
1998-99 were constructed to contrast the weak La Nifia
year (1999-2000) with strong El Nifio (1997-98) and
La Nifa (1998-99) years. Using only two TMI pixels
per scan, each DJF period generates approximately
650 000 raining profiles for use in the database.

In addition to the raining pixels in the database, a
second database is created to determine the probability
of rain for each pixel as a function of Tb and SST. For
simplicity, the present scheme uses observed Tb in con-
junction with TRMM PR-determined rain/no-rain in-
formation to construct this database with 1-K intervals
in both Tb and SST.

The retrieval algorithm itself is straightforward. For
each observed Tb and SST, the rain/no-rain database is
searched first to establish the probability of whether the
pixel is raining. If rain is possible, the raining database
is searched to find all entries having Tb and SST within
2.2 and 3 K, respectively. All entries within this interval
are given equal weight in the final solution. The 2.2-K
uncertainty in Tb is made up of an uncertainty of 1 K
for the sensor noise and 2 K for uncertainties in the
radiative transfer computations. The latter is consistent
with radiative transfer uncertainties at 19 GHz pre-
sented in Smith et al. (2002). A 3-K uncertainty was
used for SST because it comes from a 3-day average
rather than the pixel itself. Results showed very little
sensitivity if uncertainties were changed by =1 K for
either parameter.

Figures 3a and 3b compare the resulting rainfall ac-
cumulations from the above algorithm for December
1999 with the latest operational version of the GPROF
algorithm [version 6 (V6)] being utilized by the TRMM
project. Both rainfall and rain/no-rain databases from
the same time period were used in the retrieval. The
corresponding zonal mean rain accumulations are
shown in Fig. 3c. As can be seen, there is generally good
agreement in the Tropics but the error algorithm pro-
duces more rain outside of 30° latitude, particularly in
the Southern Hemisphere. This leads to somewhat
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greater overall accumulations (2.76 mm day ' for the
error algorithm versus 2.60 mm day ' for GPROF V6).

This example is used merely to illustrate that reason-
able monthly rainfall accumulations can be obtained
from this simple 19-GHz emission algorithm. Little
weight should be given to the overall agreement with
the operational algorithm because the absolute magni-
tude of the error algorithm can be modified through the
somewhat arbitrary assumptions related to cloud water,
water vapor, the melting level, and drop size distribu-
tion (DSD) assumptions detailed in the previous sec-
tion.

3. Algorithm uncertainties

The motivation of the above algorithm, as stated ear-
lier, was not to develop yet another rainfall product, but
to instead develop a simple algorithm that is amenable
to the development of a complete error model. Given
the complexities of such an error model, a simple algo-
rithm is convenient. To that end, the probabilistic meth-
odology selected for the algorithm can immediately be
used to derive the uncertainty related to the inversion
methodology. Statistics, which reflect the variability of
solutions found within the 2.2-K rms specified in the
retrieval as a function of the retrieved surface rainfall,
are presented in Fig. 4. The rainfall is again based on
December 1999 TMI data. For this figure, the 3-month
database for DJF 1999-2000 was used. The rain rate is
the conditional rain rate. The probability of rain for
each rain-rate interval is therefore also presented.

Uncertainties, as a percent of rainfall, are generally
greatest for low rainfall rates as seen in Fig. 4. At these
light rainfall rates, the Tb signal at 19 GHz is very weak
and can be confused with uncertainty in the observed
Tb or SST. Minimum uncertainties are found in the
2-10 mm h™ ' range. Above 10 mm h™', uncertainties
again increase because of saturation of the Tb signal.
Relatively little rain (<18%) falls at this high rain-rate
category. These results are consistent with the random
errors reported by L’Ecuyer and Stephens (2002), for
the TRMM operational algorithm.

The inversion uncertainties are easily computed in a
statistical algorithm framework. They are, unfortu-
nately, not the only error sources. Errors in the a priori
database itself cannot be ignored. These errors result
when the a priori database is either not correct, not
complete, or contains spatial and/or temporal variabil-
ity that cannot be resolved by the algorithm itself.
These sources of uncertainty are treated individually in
the following subsections. The final source of uncer-
tainty, addressed in section 3d, is the result of algorithm
formulation errors. This category consists of any errors



JANUARY 2006

TRMM GPROF (2A12), version 6

KUMMEROW ET AL.

c

Lalitude (degrees)

(R) = 2.60 mm day-!

g Ak ' Wi
B S T . I S Sy A S U SR T —— e T AL e

00 .01 1 05 32 64
490 [ T T ({;’\.\J*:;J T T N
— ;¥ -
20[- . .
L \ {.; -
= — % o
pre=s : "‘..) " o
of T e v
u \ bk 4 ! ( b S
: 3 { = .
-20 . - 3 ,’ { ; J ¢ } AR v 7
i S [ 4 1.‘ Y { N =
N ’ [ \ Ji — Error Algerithm  —

‘ . W P i)
Y PN S S — oI GPROENG M
o 50 100 150 200 250
mm/month

Fi1G. 3. Comparison between (a) the TRMM operational GPROF radiometer product (3A12), and (b) the current
error algorithm applied to Dec 1999 with the DJF 1999-2000 database. (c) Zonal mean rain accumulations for the

two products.

29



30 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 23
150 II||p|IlllllllllIIIIIIIIIlllIIIlllllll’ll_l’lLll_ll_lL'l_l.lJ.IJ.ll-!'Jl-llJl-&l‘-ll—ll—ll-bld-l 100
—{so
>‘i -
= 100 1 &
.é.
—e0
5 ] %
= l &
=) =
H 1o 2
S ]
g 50
—20
——Error s
i — — -Probability of Rain
[] TR FETRTTRTN FETRTTRTN] FETETT NI INTR AT NN PN TN N] IR TRTTR TN AR TN TR N a e 1)
0.25 0.5 1,0 2,0 4,0 1a.o 16,0 32,0 64,0
Rain (mm h™)

FIG. 4. Inversion uncertainties related to the nonuniqueness in the Tb to rainfall relation.
The uncertainties are conditional upon the pixel having rain. The average probability is also
shown between 0% and 100%, with values labeled on the right side of the plot.

that could exist in the code itself, any errors in the
assignment of assumed parameters discussed in section
2, as well as the constant formulation of parameters that
may have large space/time variability in nature. These
cannot be quantified by the satellite and require inde-
pendent validation data. While this is beyond the scope
of this paper, a discussion aimed at defining an ap-
proach to evaluating these potential errors is nonethe-
less included in section 3d.

a. Correctness of the a priori database

The TRMM PR operational rainfall product (2A2S,
version 5) was used to construct rainfall profiles. These,
along with some constant parameters defined in section
2, plus radiative transfer computation, were used to cre-
ate the a priori database. The constant parameters de-
scribed in section 2 are intended to represent mean
assumptions. Here, the uncertainties introduced by im-
perfect TRMM PR data are examined.

Ideally, one would run the TRMM PR operational
algorithm with various DSD assumptions to assess the
extent to which the mean TRMM PR rainfall results are
uncertain. Because of the complexity of the operational
TRMM PR algorithm, however, this proved unfeasible.
Instead, this section examines the sensitivity of the cur-
rent retrieval algorithm to systematic changes in the
TRMM PR output. Because any errors in the shape of

the rain profile must be coupled to the integrated liquid
water retrieved by the TRMM PR through the DSD
assumption, however, sensitivity tests were only con-
ducted to quantify the changes in the retrieved rainfall
as a function of changes in the integrated TRMM PR
rainwater content. To first order, this is intended to
represent changes in the retrieved profile if DSDs could
be changed. This procedure, while far from perfect, is
nonetheless illustrative for this first attempt at con-
structing a complete error model. December 1999 was
used to construct the baseline and modified databases
used in these experiments. This represents approxi-
mately 220 000 raining pixels. December 1999 was also
used to assess the retrieval sensitivity.

For these experiments, the TRMM PR rainfall is
modified throughout the rain column by a fixed per-
centage in the range of =20%. This is a reasonable
uncertainty in the global products dictated by the global
mean energy budget uncertainties (Kiehl and Tren-
berth 1997). Table 1 lists the results from these experi-
ments as a percentage of change from the baseline al-
gorithm. If the percentage remains near 0%, then there
is no sensitivity to errors in the a priori rainfall rate
prescribed by the TRMM PR. If the percentage follows
the percentage change in the TRMM PR product, then
the algorithm has no skill and simply reproduces any
errors in the a priori database. The five rain-rate cat-
egories shown in Table 1 were selected to each contain
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TABLE 1. Net bias in retrieved rainfall resulting from specified error in the TRMM PR volumetric rainfall.

Percent TRMM
rain TRMM PR + 20% TRMM PR + 10% PR TRMM PR — 10% TRMM PR — 20%
<l mmh™! 20.3 +6.1% +32% 0% —32% —6.6%
1-3mmh! 20.2 +3.7% +2.1% 0% —2.4% —=53%
3 6mmh ! 22.7 +2.6% +1.1% 0% —21% —3.5%
6-10 mm h™! 19.1 +3.9% +2.5% 0% —2.9% —7.4%
>10mmh ! 17.6 +6.1% +2.4% 0% —-0.3% +0.6%
Total 100.0 +4.3% +2.1% 0% —2.1% —4.6%

approximately 20% of the total rainfall. The exact frac-
tions are provided in the table.

Results from Table 1 indicate that the uncertainty in
the radiometer algorithm is approximately 22% of the
uncertainty in the TRMM PR rainfall, or 5% for an
uncertainty of about 20% in the TRMM PR global
mean rainfall. This uncertainty comes primarily from
low rainfall rates where the 19-GHz channels appear
insensitive to actual changes in the rain. A future re-
finement of the algorithm could use higher frequencies
as proposed by Hong et al. (1997) to reduce this sensi-
tivity to uncertainties in light rainfall. Here, however,
the aim is not to immediately improve the algorithm,
but rather to explicitly quantify the uncertainties of the
current formulation. A 5% uncertainty is therefore
used for database correctness issues.

b. Completeness of the a priori database

Incomplete databases have long been speculated to
be a significant source of uncertainty in retrieval
schemes relying on CRMs for their a priori databases.
These cloud models are difficult to run and to date only
a handful of state-of-the-art simulations are available
for retrieval algorithms (Kummerow et al. 2001). Be-
cause the TRMM PR-generated databases can be made
extremely large, this source of uncertainty can be in-
vestigated directly for the error algorithm considered
here. Comparisons with progressively smaller database
subsets suggests that results are stable to the 1% level
down to approximately 2000 entries when compared to
the benchmark database from DJF 1999-2000, contain-
ing 666 713 entries.

An alternative approach to assessing database com-
pleteness is to evaluate the expected uncertainty result-
ing from a finite number of database entries that match
a given set of observations. The best estimate for rain-
fall is given by the mean value of all database entries
fitting the observations (Tb and SST in the baseline
error algorithm). The retrieval uncertainty, or standard
deviation Oj,yersion, 1S Simply the average deviation of
the individual database entries fitting the observation
vector. Likewise, the average uncertainty in the final

solution, the standard deviation of the mean, is simply
given by Ojnversion/(11)Y2, Where n is the total number of
database entries that match the observation vector. As
a way of illustrating this result, a pixel with a Tb of 30 K
and an SST of 300 K is considered. The uncertainty in
the input variables is, as before, namely 2.5 K for the
Tb and *=3 K for the SST. Using the full database for
December 1999, the retrieval yields 3.15 = 1.38 mm h™",
having found 10 152 database entries that match the
observation vector within the specified uncertainty.
The retrieval uncertainty is 44%. If database complete-
ness errors of less than 1% are sought for this pixel,
then approximately 2000 (i.e., 44%) database entries fit-
ting the above observations are required in this ex-
ample. At the 10% level, only 20 observations are
needed. Results from a retrieval using subsets of the
complete database are shown in Table 2 to confirm
these predictions.

The mean and standard deviation of the retrieved
rainfall begin to deviate by approximately 1% as the
number of database entries fitting the observations de-
creases to 2550 in agreement with the predictions. Er-
rors increase to 10% for somewhat fewer than 40 da-
tabase entries, also in general agreement with predic-
tions.

Database completeness errors are well below the 1%
threshold for the algorithm presented here. They could

TABLE 2. Sensitivity of retrieved rainfall as a function of
database entries matching a set of observations.

Matching entries

Database (Tb =30 = 2.5 K; Rainfall
entries SST = 300 + 3 K) (mm h™1)
666 713 10.152 315+ 138
333356 5128 3.15 = 1.38
166 679 2550 315+ 141
83 339 1256 3.17 £ 1.38
41 669 605 313 = 141
20 834 294 3.09 + 1.49
10417 148 311 =145
5208 86 323 = 1.68
2604 43 342 £2.03
1302 22 3.86 = 2.67






















