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ABSTRACT
We examine when gravitationally collapsing clouds terminate their isothermal evolution. According to

our previous work, the condition with which isothermality is broken down is classiÐed into three cases,
i.e., when (1) the compressional heating rate overtakes the thermal cooling rate, (2) the optical depth for
thermal radiation reaches unity, or (3) the compressional heating rate becomes comparable with the
energy transport rate because of radiative di†usion. In the present paper this classiÐcation is extended to
more general values of the initial cloud temperature and opacity i, and we determine the criticalTinitdensities with which these conditions are satisÐed. For plausible values of and i, we Ðnd that theTinitisothermal evolution ceases when case 1 or 3 is satisÐed, and case 2 has no signiÐcance. We emphasize
that the condition of ““ qB 1 ÏÏ never terminates isothermality, but nonisothermal evolutions begin either
earlier or later depending on the initial temperature and opacity. This result contrasts with the conven-
tional idea that opaqueness breaks isothermality. On the basis of the critical density discussed above, the
minimum Jeans mass for fragmentation, is reconsidered. In contrast to the results by previousM

F
,

authors that is insensitive to and i, we Ðnd that can be substantially larger than the typicalM
F

Tinit M
Fvalue of D10~2 depending on and i. In particular, increases with decreasing metallicity,M

_
Tinit M

Ffor low-metal clouds. A cloud with i \ 10~4 cm2 g~1 and K yieldsM
F
Pi~1, Tinit\ 10 M

F
\ 3.7 M

_
.

Finally, our critical densities would be helpful for hydrodynamic simulations that are intended to simply
handle the hardening of the equation of state.
Subject headings : hydrodynamics È ISM: clouds È radiative transfer È stars : formation

1. INTRODUCTION

The assumption that the early stage of protostellar col-
lapse proceeds isothermally is widely accepted in studies of
star formation. This isothermality is justiÐed because the
thermal emission by dust grains is quite e†ective in the early
evolution, and the released gravitational energy can be
immediately radiated away. Isothermal evolution, however,
ceases when thermal radiation no longer cools the cloud
against the compressional heating. Detailed studies of the
thermal processes that violate isothermality involve compli-
cated problems including radiative transfer, so quantitative
investigations have not been done to date.

On the other hand, recent progress in computational
facilities has enabled us to handle such complicated prob-
lems rather easily. In our previous work (Masunaga,
Miyama, & Inutsuka 1998, hereafter MMI), numerical cal-
culations for protostellar collapse were carried out with an
exact treatment for radiative transfer. MMI showed that the
condition with which isothermality is violated is classiÐed
into three di†erent criteria, as is reviewed in ° 2 below. MMI
found, by both numerical results and analytical estimates,
that small di†erences in the cloud temperature and opacity
cause drastic changes in the critical density, which isocrit,the central density of the collapsing cloud when the isother-
mal evolution is terminated.

We generalize the analysis of MMI in the present paper
and reach a conclusion that the condition of ““ qB 1 ÏÏ never
terminates isothermality in possible ranges of parameters
for actual molecular clouds. This result contrasts with the

1 Also at The Department of Astronomy, The University of Tokyo.

familiar idea that isothermality is violated when the cloud
becomes opaque to its thermal radiation at gocritD 10~13
cm~3. It is a great necessity to critically reexamine this
commonly believed idea, which has been often stated in the
literature (Larson 1969 ; Appenzellar & Tscharnuter 1974 ;
Winkler & Newman 1980).

In the context of star formation, it is important to deter-
mine when isothermal evolution ceases. In the spherical
collapse of a preprotostellar core, the violation of isother-
mality leads to the formation of a central adiabatic core (the
so-called Ðrst core) whose size and mass are characterized
by (MMI). This critical density has more direct impor-ocrittance in cylindrical collapse, because an isothermally col-
lapsing Ðlament is expected to fragment because of the
hardening of the equation of state (Inutsuka & Miyama
1992, 1997, hereafter IM92 and IM97, respectively). IM97
derived and the mass of a fragmented core as functionsocritof the initial temperature and opacity. An important impli-
cation by IM97 is that the minimum Jeans mass for frag-
mentation depends sensitively on and i, contrary to theTinitconclusions drawn by previous authors (Low & Lynden-
Bell 1976 ; Rees 1976 ; Silk 1977 ; Boss 1988). We will revisit
this topic in more detail in ° 3.

Multidimensional numerical calculations are commonly
carried out under the assumption of an isothermal (or
polytropic) equation of state. This is because the radiative
transfer equation requires an unacceptable computational
e†ort to solve exactly in multiple dimensions. Some numeri-
cal studies have shown that an isothermally collapsing
cloud in some cases yields a barred structure and/or frag-
ments in the central region (Truelove et al. 1998 and refer-
ences therein). These results, however, may depend on
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whether the isothermal approximation remains valid or not
throughout the evolution, especially in the central region,
where the density can be very high. Furthermore, Truelove
et al. (1997, 1998) pointed out that artiÐcial fragments are
observed in hydrodynamic simulations when cell size is
insufficient to resolve the local Jeans length, which implies
that one should also consider the possibility that physical
fragmentation may not actually occur before isothermality
is broken down. Our criteria for the violation of isother-
mality are useful for checking validity of the isothermal
approximation. Moreover, it is possible to harden the equa-
tion of state (EOS) when the density reaches a certain criti-
cal value in numerical simulations for collapsing clouds
(e.g., Burkert, Bate, & Bodenheimer 1997). Our results
would be helpful to such calculations, in which the isother-
mal EOS is employed where and, a harder EOSo \ ocrittakes place elsewhere.

In ° 2 we review as deÐned by MMI and apply it toocritmore general values of the cloud temperature and opacity.
In ° 3 the minimum Jeans mass for fragmentation is reexa-
mined on the basis of obtained in ° 2. Our summaryocritand future tasks are described in ° 4.

2. CRITICAL DENSITIES FOR THE VIOLATION

OF ISOTHERMALITY

In general, molecular clouds are under thermal balance
described by the following relation,

!
g
] !ext \ "th , (1)

where and are the compressional heating rate of!
g
, !ext, "thgas, the heating rate due to the external sources such as

cosmic rays and visual or UV photons from surrounding
stars, and the radiative cooling rate, respectively. The iso-
thermal collapse proceeds during and thus!

g
> "th !ext Bbut isothermality is broken down when the compres-"th,sion of gas becomes so e†ective as to heat up the cloud

sufficiently against the cooling.
In this section we discuss the critical central density ocritwhen isothermal evolution is terminated in gravitational

collapse, following the manner developed by IM97 and
MMI. MMI found that the condition with which isother-
mality is broken down is classiÐed into three di†erent cri-
teria, as follows.

1. Isothermality is violated when if over-!
g
\ "th !

gwhelms before the optical depth of the collapsing cloud"thcore, q, reaches unity. This critical density is denoted by oth.2. For q[ 1, the cooling rate is given by the energy
transport rate due to radiative di†usion, instead of"dif, "th.If during q\ 1 and when qB 1, the iso-"th[ !

g
"dif \ !

gthermal evolution ceases when q arrives at unity. The
central density when qB 1 is denoted by oqF1.3. If when qB 1, isothermality survives even"dif [!

gafter q exceeds unity until the central density reaches a criti-
cal value which deÐnes the central density whenodif, !

gbecomes comparable with "dif.

Now we evaluate and to derive Note!
g
, "th, "dif ocrit.that the heating and cooling rates are deÐned per unit mass.

For brevity we suppose the local thermodynamical equi-
librium (LTE), which admits to be described simply as"thfollows,

"th\ 4i(Tinit)pT init4 , (2)

where i is the frequency-averaged opacity2 per unit mass,
which is independent of density because of LTE, and p
denotes the Stefan-Boltzmann constant. The temperature is
kept at at the initial isothermal stage. The compres-Tinitsional heating rate for gravitational collapse is (see ° 5.2 in
MMI)

!
g
\ Ac

s
2J4nGo , (3)

where is isothermal sonic speed and G is the gravitationalc
sconstant. A numerical constant A is found to be of order

unity and is nearly constant through the evolution (see
IM97 and MMI).

The optical depth, q, of the collapsing cloud is deÐned by

q\
P
0

=io dr . (4)

In order to evaluate the optical depth, one must suppose a
density structure of the collapsing cloud. For a spherical
cloud we employ the isothermal similarity solution
obtained by Larson (1969) and Penston (1969). The density
distribution in their solution is approximated by
o \ constant for and o P r~2 for where ther \ R

b
r [R

b
,

boundary radius, is approximately the Jeans length cor-R
b
,

responding to the current central density, Hence iso
c
. R

bexpressed as

R
b
\ C

2nc
s

J4nGo
c

, (5)

where a dimensionless constant C is 0.75, in comparison
with numerical results (MMI). Equation (4) is then reduced
to

qD
P
0

Rb
io

c
dr ]

P
Rb

=
io

c

A r
R

b

B~2
dr \ 2io

c
R

b
. (6)

Combining equations (5) and (6),

q\ Cio
c

4nc
s

J4nGo
c

. (7)

For a Ðlamentary cloud we use equation (8) following the
formulation by IM97, where the isothermal equilibrium
conÐguration is adopted for the density distribution

q\ n
4

io
c

S 2c
s
2

nGo
c

(8)

(eq. [28] in IM97). This approximation is justiÐed because
an isothermal Ðlament in equilibrium can collapse while
preserving the initial conÐguration, i.e., undergo homolo-
gous collapse. Moreover, a Ðlament formed by the fragmen-
tation of sheetlike clouds has a line mass only twice as large
as the equilibrium line mass (Miyama, Narita, & Hayashi
1987a, 1987b), and therefore the equilibrium structure is

2 In eq. (2) the frequency-averaged opacity i should be replaced by the
Planck mean opacity. In contrast, the Rosseland mean opacity may be
preferred in eqs. (10) and (11) below. We, however, do not discriminate
between them for brevity in this paper because the di†erence in values of
these two opacities is small.
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applicable also to collapsing clouds. One can see that equa-
tions (7) and (8) are in accord with each other except for
numerical factors.

The opacity per unit mass is assumed to be constant
throughout the collapsing cloud. This assumption is well
justiÐed when considering the dust continuum opacity,
which is independent of the velocity structure of clouds, in
contrast to the atomic or molecular line opacity.

We deÐne the r-parameter, which is the ratio of the radi-
ation energy density to the material internal energy, for

as follows :o \ocrit

rcrit4
E
oe

\ 4(c[ 1)pT init4
cocrit cs2

. (9)

The energy transport rate due to radiative di†usion is
(MMI)

"dif, MDD
E

otdif
\ 4i(Tinit)pT init4

q2 , (10)

when the internal energy of material dominates the radi-
ation energy density (i.e., andrcrit\ 1),

"dif, RDD
e

tdif
\ c

s
2i(Tinit)oc
(c[ 1)q2 , (11)

when the radiation energy density dominates (i.e., rcrit[ 1),
or collectively

"dif\ min ("dif, MD, "dif, RD) , (12)

where e and E are the internal energy density of Ñuid per
unit mass and the radiation energy density per unit volume,
respectively, and c denotes ratio of the speciÐc heats (we set
c\ 5/3 in this paper). The radiative di†usion time istdifdeÐned by where is the mean free path of aq2j

p
/c, j

p
4 1/io

photon and c is the speed of light.
Combining equations (2)È(10), we derive the critical den-

sities for the violation of isothermality. For spherical sym-
metry,

oth\ 4.7] 10~15 g cm~3
A i0
0.01 cm2 g~1

B2A Tinit
10 K

B6`2a
,

(13)

oqF1\ 2.6] 10~13 g cm~3
A i0
0.01 cm2 g~1

B~2

]
A Tinit
10 K

B~1~2a
, (14)

and

odif, MD\ 6.9] 10~14 g cm~3
A i0
0.01 cm2 g~1

B~2@3

]
A Tinit
10 K

B(4~2a)@3
, (15)

which correspond to equations (14), (17), and (20) in MMI.
Here the opacity is approximated as

i(Tinit)\ i0
A Tinit
10 K

Ba
. (16)

Note that in the typical range of temperature for molecular
clouds, a in equation (16) coincides b, which is the power-

law index in frequency (i.e., for the dust opacityil P lb)
(e.g., Beckwith et al. 1990) and is typically D1È2 for inter-
stellar dust grains. The normalizing factor, reÑectsi0,metallicity and is D0.01 cm2 g~1 for nearby molecular
clouds.

MMI found that these three critical densities are useful in
predicting when the isothermal evolution is terminated,
comparing them with radiation hydrodynamic numerical
calculations with an exact treatment for radiative transfer in
spherical symmetry.

In case of equation (15) above is replaced by thercrit[ 1,
following equation, which is derived using equation (11) :

odif, RD\ 1.7] 10~2 g cm~3
A i0
0.01 cm2 g~1

B~2

]
A Tinit
10 K

B~2~2a
. (17)

Note that spherical collapse is decelerated when the
equation of state is harder than c\ 4/3, where c is the
adiabatic component, i.e., d ln P/d ln o. Hence the violation
of isothermality does not necessarily cause an immediate
inÑuence on the evolution (see MMI). In contrast, cylin-
drical collapse should be decelerated even by a slight hard-
ening of the isothermal equation of state. Furthermore,
IM92 and IM97 have shown that a collapsing Ðlament is
expected to fragment if the radial collapse is decelerated.
Therefore for cylindrical collapse, which is consideredocritbelow, has more signiÐcance than the spherical case.

The critical densities for cylindrical (Ðlamentary) collapse
were obtained by IM97 as

oth\ 4.7] 10~15 g cm~3
A i0
0.01 cm2 g~1

B2A Tinit
10 K

B6`2a
,

(18)

oqF1\ 4.7] 10~12 g cm~3
A i0
0.01 cm2 g~1

B~2

]
A Tinit
10 K

B~1~2a
. (19)

Another critical density, which was not considered inodif,IM97, is estimated as

odif, MD\ 4.7] 10~13 g cm~3
A i0
0.01 cm2 g~1

B~2@3

]
A Tinit
10 K

B(4~2a)@3
, (20)

odif, RD \ 5.4 g cm~3
A i0
0.01 cm2 g~1

B~2A Tinit
10 K

B~2~2a
.

(21)

The di†erence in between spherical and cylindricalocritcases appears only in numerical factors. In the above equa-
tions we assumed that the gas constant isk/kmH 4 c

s
2/T

3.6] 107 ergs g~1 K.
Equations (13)È(15), (17), and (18)È(21) show that the criti-

cal densities are determined solely by and i. Thus theTinitcriteria for the violation of isothermality can be classiÐed by
and i. Figure 1 depicts the critical density (shown byTinit
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FIG. 1.ÈCritical density for the violation of isothermality (eqs. [18]È
[21]) is shown as contour curves. Note that the vertical axis represents not

but (see eq. [16]). Contour levels begin withi0 i(Tinit) log10 ocrit (g
cm~3)\ [24 in the lower left corner and increase as [22, [20, [18, . . . .
The dashed line delineates and, equivalently, (seeoth \oqF1 odif \oqF1text for detail). The critical density is given by below the dashed line andothby above. Shaded domains indicate where is the ratio ofodif rcrit [ 1, rcritthe radiation energy density to the material internal energy density and

elsewhere. The star and triangle correspond to the model param-rcrit \ 1
eters adopted by Larson (1969) and Winkler & Newman (1980), respec-
tively.

contour lines) as a function of and i. We have chosenTinitthe range of to be less than 1000 K, below which dustTinitgrains survive. Although this range is still wider than the
possible temperature range for actual molecular clouds, it is
helpful to realize the behavior of more clearly on theocritplane. The vertical axis, i, is a product of and theTinit-i i0temperature dependence according to equation (16). Under
a given value of the vertical axis is an indicator ofTinit, i0and hence of metallicity.

For boundaries between cases 1 and 3rcrit\ 1, (oth\
and are found to fall onto an equivalentoqF1 odif\ oqF1)condition, which is delineated by a dashed line in Figure 1.

(The reason is described in the next paragraph.) The critical
density is given by below the dashed line and byoth ocrit \above. The region for is divided into twoodif ocrit\odifdomains : and The conditionocrit\ odif, RD ocrit\ odif, MD.
of however, requires too large a and iocrit\ odif, RD, Tinitcompared with the typical values for molecular clouds, and
therefore the domain for does not appear inocrit\ odif, RDFigure 1. The shaded domain in the lower left corner, where
the isothermality is broken before q reaches unity, indicates
aT 4[ oe (a 4 4p/c), which, however, does not necessarily
mean that the radiation energy dominates the Ñuid internal
energy. Unless the external radiation Ðeld is intensive
enough, E is much less than aT 4 in optically thin media.
The model parameters adopted by Larson (1969) and
Winkler & Newman (1980) are indicated by the star and
triangle, respectively, in Figure 1. Both points read ocritD10~13 g cm~3, which is in accordance with the central
density when the isothermal evolution terminates in their
numerical calculations. These points accidentally locate
near the dashed line, on which the isothermal evolution
ceases when q\ 1. This seems to be a major reason why
many authors have been misled by the idea that opaqueness
terminates isothermality.

Equations (2) and (10) show that and are"th "dif, MDsmoothly connected with each other at q\ 1. In other
words, and degenerate into anoth\oqF1 odif, MD \oqF1

identical line in the plane (Fig. 1, dashed line). FigureTinit-i2a schematically shows the thermal evolution of a gravita-
tionally collapsing cloud. If the isothermal evolu-rcrit \ 1,
tion ceases when reaches (which corresponds to case!

g
"th1 above), or when reaches (case 3). Although neither!

g
"difnor provides exact estimates for intermediate"th "difoptical depth, it is clear that the critical density of (caseoqF12) plays no essential roles when rcrit\ 1.

In contrast to is not ensured to be con-"dif, MD, "dif, RDnected smoothly with near qB 1, as is found by com-"thparing equations (2) and (11). Therefore, andoth\ oqF1should be indicated by two separate lines inodif, RD\ oqF1the plane, and the domain for wouldTinit-i ocrit\ oqF1appear between these two lines. Figure 2b draws the
thermal evolution for where case 2 appears as wellrcrit[ 1,
as case 1 and 3. However, corresponds toodif, RD \ oqF1K (!) independently of i, so case 2 isTinit\ 1.1] 1013
highly unlikely to occur.

As a conclusion, the critical density for the violation of
isothermality is determined by or depending onoth odif, MD,

and i, for gravitationally collapsing clouds. T he criticalTinitdensity of has no signiÐcance in practice. This fact hasoqF1been overlooked in all previous works on gravitational col-
lapse of protostellar clouds, including our own papers
(IM97 and MMI).

3. THE MINIMUM JEANS MASS FOR FRAGMENTATION

This section is devoted to discussions on the minimum
Jeans mass of a fragment of clouds. Previous formulations
of the minimum Jeans mass are reconsidered, and we show
that they should be modiÐed on the basis of our newly
derived criteria for the violation of isothermality.

FIG. 2.ÈSchematic picture illustrating the classiÐcation for isocritshown. The heating and cooling rates and are depicted as a(!
g
, "th, "dif)function of time. The optical depth for thermal radiation, q, is small enough

initially but increases monotonically as the collapse proceeds. The upper
panel is for the case of and the lower panel for See text forrcrit \ 1 rcrit [ 1.
more detail.
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3.1. Comments on the Previous Studies
The minimum Jeans mass for fragmentation, isM

F
,

determined by the condition that the equation of state
becomes sufficiently hard to stop further fragmentation. In
order to obtain Low & Lynden-Bell (1976), Silk (1977),M

F
,

and Kanjilal & Basu (1992) imposed two conditions of
(eq. [3]) and q\ 1 simultaneously. As a result, the!

g
\"thtemperature of clouds that deÐnes is determinedM

Funiquely, along with itself. However, as IM97 noted,M
Fand i must be left as free parameters, because the cloudTinittemperature is actually given by environmental factors,

including the intensity of interstellar radiation and the rate
of cosmic-ray heating. Hence we estimate the minimum
Jeans mass as a function of both and i on the basis ofTinitthe discussion on in ° 2 above. In this manner weocritpropose a more generalized formulation for in ° 3.2.M

FMMI shows that the temperature increases only grad-
ually in case 1 after reaches until the temperature!

g
"th,eventually begins to rise rapidly when q exceeds unity.

Therefore one might wonder whether the condition of !
g
\

can actually trigger the fragmentation of spherical"thclouds.
Tohline (1980) raised serious objections to the previous

models for fragmentation of spherically collapsing clouds.
His results indicate that fragmentation occurs after a cloud
is collapsed into a highly Ñattened sheet. A collapsed sheet-
like cloud is subject to fragmentation into Ðlaments
(Miyama et al. 1987a, 1987b), and therefore the problem of
cloud fragmentation becomes a problem of the evolution of
Ðlaments. As was mentioned in the previous section, a col-
lapsing Ðlament is expected to fragment by a slight hard-
ening of the isothermal equation of state, in contrast to
spherical collapse, so even a gradual increase of tem-
perature can trigger fragmentation (IM92, IM97).

Rees (1976) considered the condition for determining M
Fas

GM
F
2

Rtff
D 4nfR2pT init4 , (22)

where is the free-fall time and f is a nondimensionaltfffactor less than unity that depends on the detailed physics
of the cooling and opacity. In contrast to the other authors
mentioned above, Rees (1976) considered the thermal
balance in a collapsing cloud after q exceeds unity, and thus
his criterion (eq. [22]) corresponds to our case 3. This cri-
terion, however, assumes that the released gravitational
energy is instantaneously radiated away from the cloud
surface. In other words, equation (22) neglects the time
required to convey the released energy to the cloud surface
by radiative di†usion. However, the energy transport rate
due to radiative di†usion is essentially important in case 3,
as was described in the previous section. Therefore, the
right-hand side of equation (22) should be modiÐed into

P
"dif o dV D

4ipT init4
q2 onR3D

4nR2pT init4
q

, (23)

where we used equation (10) and replaced ioR with q.
Equation (23) claims that the right-hand side of equation
(22) overestimates the cooling rate by a factor of q. It may be
possible to substitute 1/q for f in equation (22), but in this
case f cannot be a constant factor, since q varies with o (or

and R. Furthermore, q is a function also of both opacitytff)and temperature (because characterizes the similarityTinit

solution for density structure), and therefore the original
formulation by Rees (eq. [22]) requires great care to use.

3.2. A Revised DeÐnition of the Minimum Jeans Mass
Following IM97, we evaluate as the mean clumpM

Fmass of a Ðlament with the e†ective radius of H
f
\

setting the mean separation between clumpsJ2c
s
2/nGocrit,to be 8 ] H

f
:

M
F
^ ocrit nH

f
2(8H

f
) \ 16c

s
3

G
S 2

nGocrit
. (24)

Eliminating in equation (24) by equations (18) andocrit(20), we have

M
F, th\ 3.7] 10~2 M

_

A i0
0.01 cm2 g~1

B~1

]
A Tinit
10 K

B~(3`2a)@2
(25)

for case 1,

M
F, dif, MD\ 3.7] 10~3 M

_

A i0
0.01 cm2 g~1

B1@3

]
A Tinit
10 K

B(5`2a)@6
(26)

for case 3 with andrcrit\ 1,

M
F, dif, RD \ 1.1] 10~9 M

_

A i0
0.01 cm2 g~1

BA Tinit
10 K

B(5`2a)@2

(27)

for case 3 with rcrit[ 1.
Figure 3 illustrates by contour lines in theM

F
Tinit-iplane. The dashed line, tracing the bottom of a ravine

drawn by contour, represents andM
F, th\ M

F, qF1similarly to Figure 1. Then equalsM
F, dif, MD\M

F, qF1 MFbelow the dashed line and above,M
F, th M

F
\ M

F, dif, MDaccording to Figure 1. Recalling that Low & Lynden-Bell
(1976) and Silk (1977) considered andocrit\oth ocrit\ oqF1simultaneously, one Ðnds that their solution for is con-M

Fstrained on the dashed line in Figure 3. Using equations (25)

FIG. 3.ÈMinimum Jeans mass for fragmentation (eqs. [25]È[27]) is
shown as contour curves. Note that the vertical axis represents not buti0(see eq. [16]). Contour levels begin with in thei(Tinit) log10 M

F
/M

_
\[2

upper left corner and increase as [1.5, [1, [0.5, . . . . The dashed line
delineates and, equivalently, accordingM

F, th \M
F, qF1 M

F, dif \M
F, qF1to Fig. 1. The minimum Jeans mass is given by below the dashed lineM

F, thand by above.M
F, dif
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FIG. 4.ÈMinimum Jeans masses for fragmentation under given tem-
peratures. Solid, dotted, and dashed curves correspond to 20,Tinit \ 10,
and 30 K, respectively.

and (26), one obtains deÐned on the dashed line byM
F

M
F
\ 8.4] 10~3 M

_

A i0
0.01 cm2 g~1

B~1@(7`4a)
, (28)

which indeed recovers as deÐned by Low & Lynden-M
FBell (1976) and Silk (1977). Low & Lynden-Bell emphasized

the weak dependence of on as is seen in equationM
F

i0,
(28).

On the other hand, if assuming that does not varyTinitsigniÐcantly, as is the case in actual molecular clouds, equa-
tion (25) shows that the dependence on is no longeri0weak. For the typical temperature of molecular clouds

K and for the typical dust opacity i ^ 0.01TinitD 10È20
cm2 g~1, Figure 3 shows Hence we chooseM

F
\ M

F, th.equation (25), which reads Now we con-M
F
^ 10~2 M

_
.

sider how varies with the decreasing dust opacity. AsM
Fwas mentioned in ° 2, lowering i under a Ðxed corre-Tinitsponds to lowering metallicity of the clouds. Equation (25)

tells us that can be signiÐcantly larger than D10~2M
F

M
_

,
which is inversely proportional to for low-metal clouds.i0Figure 4 delineates as a function of i under Ðxed initialM

Ftemperatures : 20, and 30 K. For instance, a cloudTinit\ 10,
with K and i \ 10~4 cm2 g~1 (one-hundredth asTinit\ 10
small as the typical metallicity) provides M

F
\ 3.7 M

_
.

This fact might be responsible for the cuto†, if it exists, at
the low-mass end of the initial mass function.

4. SUMMARY

Our Ðndings in the present paper are summarized as
follows.

1. We derived three criteria for the central density ocritwhen isothermality is violated in gravitationally collapsing
clouds. These criteria are supported by numerical results in
our previous work. We classiÐed in the plane andocrit Tinit-ifound that or determines in plausible rangesoth odif, MD ocritof parameters for actual molecular clouds. Another cri-
terion, actually has no importance.ocrit\ oqF1,2. This result indicates that the condition of ““ qB 1 ÏÏ
never violates isothermality. Instead, nonisothermal evolu-
tions begin either earlier or later, depending on the initial
temperature and opacity, than the optical depth reaches
unity. The conventional idea that the isothermal approx-
imation is valid during the period when the central density
is less than 10~13 g cm~3 is not supported physically.

3. The minimum Jeans mass for fragmentation, isM
F
,

characterized by hence is a function of bothocrit, M
F

Tinitand i as well as The typical value of is D10~2ocrit. M
F

M
_in accordance with the commonly believed value, but M
Fcan increase substantially depending on and i. In par-Tinitticular, molecular clouds with lower metallicity yield a

larger inversely proportionally to metallicity. ForM
FK, a cloud with i \ 10~4 cm2 g~1, which isTinit\ 10

smaller by a hundred than the typical value for nearby
molecular clouds, yields M

F
\ 3.7 M

_
.

The critical densities derived here would be helpful to
numerical calculations in which either isothermal or a
harder EOS (e.g., c\ 5/3) is chosen corresponding to
whether oro \ocrit o [ ocrit.In the present investigation we suppose that the opacity
per unit mass is independent of the density (i.e., assuming
LTE) and is homogeneous throughout the cloud. This
assumption is justiÐed when the cloud density is so high
that interstellar dust is the dominant coolant, but it is inap-
plicable for lower densities where the cooling by molecular
lines mainly contributes to the opacity. For the molecular
line cooling, LTE is not satisÐed in general and the assump-
tion that the opacity per unit mass is homogeneous is vio-
lated because the line feature depends on the velocity
structure of clouds. Our future works will be intended to
generalize the present results to be applicable to the molec-
ular or atomic line opacity.
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