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Abstract
Biases in climatological and extreme precipitation estimates are assessed for 11 global observational
datasets constructedwithmerged satellitemeasurements and/or rain gauge networks. Specifically,
the biases in extreme precipitation are contrasted withmean-state biases. Extreme precipitation is
defined by a 99th percentile threshold (R99p) on a daily, 1°×1° grid for 50 °S–50 °N. The spatial
pattern of extreme precipitation lacks distinct features such as the ITCZ that is evident in the global
climatologicalmap, and the climatology and extremes share little in common in terms of the spatial
characteristics of inter-product biases. The time series also exhibit a larger spread in the extremes
than in the climatology. Further, when analysed from2001 to 2013, they show relatively consistent
decadal stability in the climatology over oceanwhile the dispersion is larger for the extremes over
ocean. This contrast is not observed over land. Overall, the results suggest that the inter-product
biases apparent in the climatology are a poor predictor of the extreme-precipitation biases even in a
qualitative sense.

Appendix: Glossary

AMSR-E AdvancedMicrowave
Scanning Radiometer
for EOS

CDR ClimateData Record

CHIRPS ClimateHazardsGroup
InfraRed Precipitation
with Station

CMORPH CPCMORPHing
technique

CMSAF Satellite Application
Facility onClimate
Monitoring

CPC Climate Prediction
Center

DAPAGLOCO Daily PrecipitationAnaly-
sis for the validation of
Globalmedium-range

Climate predictions
Operationalized

DMSP DefenceMeteorological
Satellite Program

ENSO ElNiño Southern
Oscillation

EOS EarthObserving System

ETCCDI Expert TeamonClimate
Change andDetection
Indices

FROGS Frequent Rainfall
Observations onGridS

GPCC Global Precipitation
Climatology Centre

GPCP Global Precipitation
Climatology Project

GPM Global Precipitation
MeasurementMission
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GSMaP Global SatelliteMapping
of Precipitation

HOAPS HamburgOceanAtmos-
phere Parameters and
Fluxes fromSatellite Data

IMERG IntegratedMultisatellite
Retrievals forGPM

PERSIANN PrecipitationEstimation
fromRemotely Sensed
InformationusingArtifi-
cialNeuralNetworks

SSM/I Special SensorMicro-
wave/Imager

SSMIS Special SensorMicrowave
Imager/Sounder

TAPEER Tropical Amount of
Precipitationwith an
Estimation of ERror

TRMM Tropical RainfallMeasur-
ingMission

1. Introduction

Accurately measuring precipitation on a global scale
remains a challenge. The ground-based capability for
monitoring precipitation is limited to the land portion of
the Earth’s surface.Most countries operate some formof
rain-gauge network, but only a few countries have the
opportunity to combine these with networks of local
weather radars. The ground-baseddatasets usedhere rely
on collections from these various networks of rain-
gauges. Thus, they are limited to coverage over land,with
some regions having relatively sparse coverage. Satellite
observations offer a complementary means of precipita-
tion measurements beyond the reach of in situ weather
stations, but satellites estimates are not free of errors.
Geostationary (GEO) satellites have the ability to uni-
formly and continuously monitor clouds, but not with
an instrument sensitive to raindrops beneath the cloud
layer they observe. Low Earth orbiting (LEO) spacecrafts
carrying microwave instruments are superior in the
detection skill of precipitating particles, but sample only
intermittently and thus canmiss important components
of precipitation’s inherent diurnal cycle or intense short-
term events. Among the precipitation datasets widely
adopted across the user community are ‘merged’ pro-
ducts constructed with different observations from
multiple GEO and/or LEO satellites with or without
gauge networks in the hope to compensate for the
drawbacks inherent in individual observations (see
section2 for a list of suchdatasets).

Significant effort has been devoted to assess the con-
sistency of these ‘merged’ precipitation datasets ([1–5]
among others).Most of thework in this area, however, is
focused on the ‘mean’ precipitation accumulation rather
than the properties of the precipitationdistribution itself.

There exist some studies that focus on extremeprecipita-
tion at regional scales (e.g [6, 7]). Systematic assessments
related to extremes on global scale, however, are few in
the literature (e.g [8]). Yet, knowledge related to mean
inter-product differences are not necessarily applicable
to extremes, given that satellite-derived extreme pre-
cipitation is often associated with some cloud property
(e.g. cloud top height or precipitation water content)
rather than the intensity of precipitation itself [9].

The main goal of this article is a general descrip-
tion of inter-product precipitation biases for extreme
precipitation as compared to the mean-state biases,
providing a concise overview of the consistency
among a broad range of global precipitation datasets in
contrast to a large body of relevant work in the litera-
ture where selected products were examined in depth.
The inter-comparison is made using different aspects
of the precipitation such as precipitation histograms
and global distribution patterns to identifying sys-
tematic similarities and differences among the pro-
ducts. The multi-year time series of precipitation are
also intercompared and stability estimates are exam-
ined for the period of 2001–2013, for which amajority
of the products currently analysed are available.

2.Data

In total, 11 products are selected for this work,
consisting of 9 global multi-satellite datasets, with or
without gauge calibration over land, and 2 gauge-based
products used internally in some of those satellite
products. The multi-instrument datasets included in
this analysis are CMORPH v1.0 [10], GPCP v1.3 daily
[11], GSMaP v6 [12], HOAPS v4.0 [13], IMERGv5 [14],
PERSIANN-CDR v1r1 [15], TAPEER v1.5 [16], and
TRMM 3B42 v7 [17]. Three land-only products,
CHIRPS v2.0 [18], CPC v1.0 [19], and GPCC Full Data
Daily v2018 [20, 21], are also analysed. All precipitation
estimates are adjusted to a daily 1°×1° grid, which
accommodates the native resolution of all products in
the current inventory. This choice is not necessarily
optimal for assessing extreme precipitation [8] but is
crucial to ensure the consistency in spatial and temporal
resolutions for the inter-comparison. The statistical
properties of extremes can be distorted for the most
intense events when projected onto a coarse grid. As
such, the current comparison may not precisely reflect
the characteristics intrinsic of the original products at
their native resolutions (see section 3.1). The product
versions and resolution adopted here are fully compli-
ant with the datasets stored in the FROGS archives [22].
Also, data from 2015 is not an official CM SAFHOAPS
product and not part of FROGS. It was provided as a
beta version of HOAPS version 4.We do not analyse all
the products available from FROGS. The products on
FROGS that are regional or ground-based without
being used for any satellite-based dataset are outside our
scope. Upstream products (e.g. microwave-only and
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no-gauge products) of 3B42, GSMaP, and CMORPH,
regional products, and reanalysis precipitation are also
not included in the current study.

CMORPH, GPCP, GSMaP, IMERG, TAPEER, and
TRMM 3B42 are all constructed with satellite micro-
wave and infrared measurements merged on a daily
basis, where details of the merging techniques differ
from one product to another. GSMaP, IMERG, and
3B42 each contain gauge-adjusted estimates over land,
which are used in this study.GPCPdaily precipitation is
scaled to its monthly, gauge-calibrated product. PER-
SIANN-CDR is an infrared-based product adjusted to
GPCP monthly precipitation. HOAPS precipitation is
obtained from DMSP SSM/I and SSMIS observations
over the global ice-free ocean. GPCC andCPC are grid-
ded rainfall products constructed with data from gauge
networks over the globe. CHIRPS is a satellite infrared-
basedproduct blendedwith stationdata.

IMERG is available only after the GPM launch in
2014, so we define the full year of 2015 as the reference
period for detailed inter-comparisons. The time series
analysis in section 3.3 is performed without IMERG.
The latitudinal band of 50 °S–50 °N is analysed except
for TAPEER (30 °S–30 °N) unless otherwise noted.

3. Climatology versus extremes

3.1.Histogram
Figure 1 shows log–log daily precipitation histograms
computed from latitudinally-weighted statistics of
daily values on a regular 1°×1° grid for different
datasets. The histogram is not normalised, so excesses
and deficits do not cancel each other out. Nonetheless,
the inter-product bias characteristics are inhomoge-
neous across magnitudes of precipitation. For
instance, GPCPhas higher frequency in the intermedi-
ate range of precipitation over ocean but quickly drops
below all other datasets once daily precipitation
exceeds approximately 30 mm d−1. In contrast,
HOAPS has a large tail of high precipitation rates at the
expense of a relatively low occurrence of intermediate
precipitation. This demonstrates that biases in
extremes can be fundamentally different from those
that constitute the climatology (light and moderate
precipitation). The spread among the products is
smaller over land than over ocean.

It is noted that because precipitation estimates
have been averaged onto a common 1°×1° grid in
figure 1, products with a higher native resolution
would originally have a better capability of capturing
extremes (figure S1 and table S1 is available online at
stacks.iop.org/ERL/14/125016/mmedia in the sup-
plementary material). Comparing figures 1 with S1
shows that the precipitation histograms at the original
resolution are broadly spread across different pro-
ducts, where high-resolution datasets are indeed able
to capture higher extremes. The spread is reduced with

the signals of heaviest rains averaged out at the 1°× 1°
resolution (figure 1). The inter-product spread, how-
ever, does not entirely vanishes, implying product-
specific biases as described above.

In the figures that follow, extreme precipitation is
defined by a 99th percentile threshold (or R99p
according to the ETCCDI indices [23],) on a daily,
1°×1° scale. We have tested the 30 and 20 mm d−1

thresholds for comparison (see the supplemental mat-
erial). These two fixed-value thresholds correspond to
different percentiles in the individual products and
hence could potentially yield different extreme statis-
tics fromR99p. The zonal-mean extreme precipitation
varies in a quantitative sense with threshold defini-
tions, while the overall pattern stays qualitatively con-
sistent among different thresholds.

3.2. Global distribution
Figure 2 shows the global distribution of the 2015
annual climatology of precipitation. Each product is
presented as the anomaly field from the product
ensemble mean (top left). Note that the magnitude of
the anomaly field stays much smaller than the
ensemble mean and all the products agree well in the
general pattern as well as the zonal means (figures 4
and 5 below). Regional precipitation biases none-
theless show some interesting features. Oceanic pre-
cipitation from some products (GSMaP, HOAPS, and
3B42) is systematically higher in the ITCZ and lower in
mid-latitudes than the ensemble mean, while others
(CMORPH and IMERG) show contrasting spatial
patterns in the anomaly field. Such a systematic bias
pattern might be related to the built-in statistical
relation of IR radiance with surface rainfall because
dominant convective systems change from one region
to the other. Deep organised systems are typical of the
tropics while subtropical rainfall mostly comes from
shallow cumulus. Mid-latitude storms are typically
associated with synoptic-scale frontal systems. Other-
wise it is not obvious why some products exhibit
certain regional bias patterns given that the basic
architecture of the retrieval algorithms is similar.
Characteristic regionality in the global distribution of
inter-product biaseswas also shownby [3]. Small-scale
structures with alternating signs dominate outside the
ITCZ inGPCP and PERSIANN.

African and South American precipitation is either
largely overestimated or underestimated depending
on the products, with the consensus being poor even
among the two gauge-based products (CPC and
GPCC). The disagreement in the Congo is due largely
to the known unavailability of data there in 2015 for
GPCC and CPC, while origins of the discrepancy in
South America are less clear. CMORPH, GPCP,
GSMaP and PERSIANN exhibit a feature in the differ-
ence to the ensemble mean from 40 °S southward
(GPCP and GSMaP also from 40 °N northward). This
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coincides with the transition from utilisation of
GEO+LEO to LEOdata.

The global distribution of extreme precipitation is
qualitatively different from the climatology (figure 3).
Subtropical bands of enhanced precipitation in the
ensemblemean of extremes (top left) are in sharp con-
trast to the ITCZ, which stands out in the climatology.
The spatial structure of extreme precipitation bias is
more or less homogeneous although the sign andmag-
nitude differs vastly among products. Figures 2 and 3
together show that extremes and climatology bear no
apparent similarity in the geographical pattern either
of the ensemblemean or the anomalyfield.

To summarise the inter-product differences, zonal
mean precipitation climatology and extremes are plot-
ted over the ocean in figure 4. While there is reason-
able agreement for the climatology, different datasets
have large differences in their extremes. The spread is
relatively modest over land (figure 5) as expected from
figure 1. Interestingly, most satellite-based products
are bound between the two gauge products (CPC and
GPCC) for the climatology over tropical land, pre-
sumably because the gauge network there is so sparse

that two gauge products disagree from each other,
depending sensitively on the choice of stations and
interpolation schemes. The currently analysed version
of GSMaP is heavily adjusted to the CPC product and
closely follows the CPC rain in the zonal-mean clima-
tology. Note that latitudes south of 45 °S over land
consist almost solely of the southern tip of South
America and suffer from larger statistical noise than
other domains. Zonal-mean extremes with fixed rain-
rate thresholds (20 and 30 mm d−1) exhibit qualita-
tively consistent spatial patterns in comparison with
the R99p extremes although there are differences in
absolute values (figures S2 and S3 in the supplemen-
tarymaterial).

3.3. Time series
The analysis of time series is based on the same data
records as in previous sections, i.e. data records from
the FROGS archive [22]. The time series are computed
either as weighted averages from daily values on a
regular 1°×1° grid per month or as 99th percentiles
for a maximum period from January 1979—Decem-
ber 2018. Besides global means within 50 °N/S,means

Figure 1. Log–log daily precipitation histogram for global (50 °S–50 °N) precipitation over ocean (top) and over land (bottom).
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from three zonal bands are analysed: tropics within
±10°, northern hemisphere within 10 °N and 35 °N,
and southern hemisphere within 10 °S and 35 °S.
TAPEER does not fully cover these regions and is not
part of the global analysis. Results related to the zonal
bands are shown in the supplementary material. The
averaged time series were further processed in two
different ways: (1) For each individual data record,
region, and metric (here, mean and 99th percentile),
the following processing was applied: the climatologi-
cal mean and annual cycle were computed. Then, the
climatological annual cycle was removed. The resulting
time series exhibits anomalies around ameanprecipita-
tion level of 0 mm d−1. Finally, the mean precipitation
was added again. This approach was also applied by
[24]. (2) For each region, for each metric and for the
period January 2001—December 2013, the ensemble
meanwas computed.Then, thedifference between each
data record and the ensemble mean was normalised to
the ensemblemean. This relative anomaly (or bias) time
series is also used to estimate stability. Here, stability
was computed as the change of the relative bias over the
period 2001–2013 using a least absolute deviation
method (adapted from the routine MEDFIT on page
703 in [25]). Associated uncertainties were computed
following [26, 27] (see equation (6) of [27]). The null
hypothesis is that the stability is different from 0%/

decade and the alternative hypothesis is that the stability
is not significantly different from 0%/decade. The null
hypothesis is rejected if the coverage probability>95%
(orp<0.05).

We show results fromapproach (1)first, as this ana-
lysis is defined over the full temporal coverage of each
data record. Figure 6 shows such time series for the glo-
bal ocean and land within 50 °N/S. The vertical axis
was optimised to allow a maximum zoom into the
figure at the expense of a variable y-axis range. In gen-
eral, the monthly means exhibit fairly good agreement
over the ocean and only GSMaP is biased low. For the
monthly means over land two clusters are evident
corresponding to CPC and GPCC. Clustering around
the gauge-based products may be partly explained by
the gauge adjustment procedures: GPCP via its
monthly adjustment, while 3B42 use a previous version
of GPCC, GSMaP and CMORPH adopt CPC, PER-
SIANN was adjusted to GPCP monthly precipitation
and CHIRPS utilises gauge data (see [28] for details on
CHIRPS). The difference between the clusters is
approximately 0.5 mmd−1 in the 2000s, associated
with a bias betweenCPCandGPCC.This bias is smaller
in the 1980s though. Over land PERSIANN exhibits
good agreement with GPCP and GPCC, except prior to
the late 1980s. Furthermore, it can be seen thatmonthly
means of HOAPS exhibit anomalies that coincide with
ENSO variability. For PERSIANN, anomalies in May
and June 1984 and June and July 2017 are evident.
These anomalies coincide with systematic regional data
gaps over Africa, Europe, and the Indian Ocean (May
and June 1984) and anomalously low precipitation over
the ITCZ in June and July 2017.

The results for the 99th percentile exhibit less
agreement, i.e. a larger spread, and a lower level of
clustering than for mean precipitation. In particular,

Figure 2.Product ensemblemean of 2015 annual precipitation climatology (top left) and anomaly from the ensemble for each
product. TAPEER is not included in the ensemblemean because of the unavailability beyond 30° in latitude.
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the clustering aroundGPCC and CPC is no longer evi-
dent. Over the ocean, maximum 99th percentiles of
precipitation are similar among 3B42, CMORPH,
GSMaP and HOAPS while GPCP exhibits minimum
99th percentiles. An apparent jump to lower 99th per-
centiles for GPCP over the ocean occurs in late 2008/
early 2009. It is noteworthy as it is not present in the
other data records. Within GPCP the utilisation of
SSM/I data ends in December 2008 and transfers to
SSMIS in January 2009 [25]. For the GPCP Daily ana-
lysis the SSMI/SSMIS data is used to establish a pre-
cipitation frequency or precipitation/no precipitation
threshold, with mean precipitation intensity deter-
mined by the GPCP monthly precipitation. This pro-
duces a conservative 99th (and other high percentile)
values. The 2009 shift is likely related to a slight shift in
that SSMI/SSMIS precipitation threshold that went
undetected. This discontinuity may be sensitive to the
threshold for extremes and needs further invest-
igation. Over land 99th percentiles are lowest for PER-
SIANN and CHIRPS and highest for GPCC, with peak
values in early 1982. Thismaximumcoincides with the
eruption of El Chichon in March 1982. However,
values for January and February 1982 are the second
and third highest values. Finally, a decrease in the 99th
percentile of 3B42 over land between the start of the
time series and 2005 is observed which is not evident
in the other data records.

Results shown in figure 6 are discussed further
because several minima and maxima of globally
(within 50 °N/S) averaged values coincide with ENSO:
Maxima and minima in mean precipitation and in
99th percentiles over the ocean are observed in 1998,

2010 and 2016 as well as in 1999, 2008 and 2011,
corresponding to El Niño and La Niña events, respec-
tively. Mean precipitation minima over land coincide
with El Niño events in 1983, 1992, 1997, and 2016.
Maxima are present in 1999/2000 and 2010/2011,
coinciding with LaNiña events. It is noticeable that the
99th percentiles over land do not exhibit minima/
maxima in coherence with ENSO. The imprint of
ENSO on precipitation was discussed, e.g. in [29, 30]
and the contrasting behaviour in mean precipitation
between land and oceanwas also described, e.g. by [30]
[31]. identified the impact of El Chichon and Pinatubo
as minima in 1983 and 1991 in precipitation from
GPCP [29]. observed coherent variability between
precipitation extremes and ENSO over the tropical
ocean and increased amplitudes of this variability with
increasing percentiles [32]. emphasised that the
response of precipitation to ENSO has a strong regio-
nal imprint which can locally exceed the expectation
from Clausius–Clapeyron due to amplifications of
ENSO dynamics by atmospheric feedbacks. They fur-
ther concluded that the response of precipitation in
the warm, moist ENSO regions is similar to the
extreme response discussed in [29] while the tropic-
wide response to ENSO is small due to compensating
moistening and drying effects. Results from analysis of
scaling or regression between precipitation and sea
surface temperature data can be found in papers men-
tioned above and in particular in [33]who also utilised
data records from FROGS. Note that the minimum in
mean precipitation over land in 2005 does not corre-
late with ENSO or volcanoes. At present, this anomaly
cannot be explained. Finally, it is noted that results

Figure 3.As figure 2 but for extremes.
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presented in sections 3.1 and 3.2 are affected by the El
Niño in 2015/2016. The observed response of HOAPS
to ENSO partly explains the observed behaviour pre-
sented in these previous sections.

Time series of anomalies relative to the ensemble
mean for the global ocean and land within 50 °N/S are
shown in figure 7. Overall features are fairly similar to
results shown infigure 6. This is in particular valid for the
overall agreement in mean precipitation over the ocean,
the clustering in mean precipitation over land and the
larger spread in biases for 99th percentiles than formean
precipitation. To some extent the small bias among the
mean precipitation over ocean can be explained with the
adjustment of PERSIANN and CMORPH to GPCP (the
latter over ocean only, see [34]). Maximum temporal
variability in mean precipitation over ocean is observed
for HOAPS and 3B42, with opposing minima and max-
ima between both data records reflecting maximum dif-
ference in the response to ENSO. The 99th percentile
anomaly of CHIRPS over land exhibits a pronounced
annual cycle. This indicates thatCHIRPS exhibits the lar-
gest amplitude of the annual cycle. While hardly evident
in figure 6, it can be seen in figure 7 that CHIRPS and

CMOPRH are not closely following the 99th percentile
anomaly ofCPCover land.

Stability estimates were computed for all time series
shown in figure 7 with results provided in table 1. The
spread in stability estimates over the ocean is fairly small,
with generally non-significantdifferences among thepro-
ducts. An exception is the stability of 3B42. Prior to 2008
3B42 anomalies are smaller compared to the period after
2010 (see figure 7). In June 2009 elements of the pre-
cipitation hardware of TRMMwere switched fromnom-
inal to back-up (https://pmm.nasa.gov/sites/default/
files/document_files/TRMMSenRevProp_v1.2.pdf).
However, a clear temporal coincidence between a jump
in anomalies and this event is not evident. Stability esti-
mates for 99th percentiles over ocean exhibit a larger
spread with values ranging from−6.7%/decade (GPCP)
to 7.4%/decade (3B42). Here, stability estimates are gen-
erally significantly different. GPCP exhibits the largest
difference in stability betweenmeanprecipitation and the
99th percentile: while the mean precipitation of GPCP
exhibits the highest level of stability, the low stability of
the 99th percentile time series is explained by the jump in
that time series occurring in late 2008/early 2009 (see

Figure 4.Zonalmean precipitation (2015 annualmean) over ocean for climatology (top) and extremes (bottom).
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second panel of figures 6 and 7). As mentioned earlier,
this jump coincides with the change in the utilisation of
SSM/I andSSMISdata.

The stability estimates for mean precipitation over
land exhibit a fairly small spread, though with quite a
few significant differences. CHIRPS, CMORPH and
GPCC exhibit non-significant and low stability
estimates while the stability estimate of GSMaP
(5.3%±0.52%/decade) is the largest observed esti-
mate over land. GPCP and GSMaP show maximum
absolute stability estimates for 99th percentiles over
land. The spread in 99th percentiles is smaller for land-
based results than the equivalent ocean-based values. A
possible explanation could be the direct or indirect use
of rain gauges in the various products. While differ-
ences still exist because of the way the rain gauges are
incorporated into products, an overall reduction in the
land-based variability is not surprising.

It is emphasised that the ensemble mean contains
contributions from all data records, including artificial
trends and anomalies. Thus, the above stability discus-
sion cannot address the true stability of the data
records. However, the presented stability results allow

the identification of stability issues in a relative sense
and support the identification of spurious changes in
themean relative bias.

4.Discussion and summary

This work highlights precipitation differences among
global gridded products in terms of regional patterns
and multi-year time series, with a focus on the
qualitative contrast between climatology and extremes.
Precipitation extremes are defined by the 99th-percen-
tile threshold (R99p) on a daily 1°×1° grid. All
products agree on some fundamental characteristics of
extremes, such as subtropical maxima over ocean. On
the other hand, the inter-product spread is significantly
larger for extremes than for climatology particularly
over the ocean, perhaps because there are no rain
gauges available to bias-correct products. This suggests
the importance of analysing multiple precipitation
products at a time instead of relying on a single,
arbitrarily chosen, product.

Figure 5.As infigure 4 but over land. The range for the ordinate is chosen to be identical to figure 4.
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Although this article is not intended to rank the
products for accuracy, it would be beneficial to com-
ment on potential issues or strengths of selected data-
sets. HOAPS exhibits anomalies which coincide with
ENSO but are in contrast to 3B42 anomalies. Figures

S6–S8 of the supplement show that the ENSO
response of HOAPS is dominated by observations
over the tropics within 10 °N/S. Input observations
for HOAPS are obtained exclusively from the SSM/I
and SSMIS sensors. When using the DAPAGLOCO

Figure 6.Time series ofmonthlymean precipitationwith the annual cycle being removed: global ocean (top two panels) and global
landwithin 50 °N/S (bottom two panels), mean over all defined values (first and third panel), and 99th percentile (second and fourth
panel).
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dataset (DOI:10.5676/DWD_CDC/HOGP_100/V002)
which utilises SSM/I, SSMIS, AMSR-E and TMI obser-
vations and the HOAPS retrieval [13], the mean pre-
cipitation over the global ice-free ocean is similar
between the HOAPS and the DAPAGLOCO products
(not shown), with slightly smaller anomalies during

La Niña events. Thus, the temporal sampling in HOAPS
only partly explains HOAPS’ ENSO response, i.e. the
sensitivity of the retrieval needs to be examined in order
to understand this feature. Over oceans, GSMaP exhibits
the lowest mean precipitation. In figures S6–S8 of the
supplement GSMaP is characterised by only slightly

Figure 7.Time series of anomalies relative to the ensemblemean for the period 2001–2013: global ocean (top twopanels) and global
landwithin 50 °N/S (bottom two panels), mean over all defined values (first and third panel), and 99th percentile (second and fourth
panel).
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lowermean precipitation over the tropics and the north-
ern and southern hemisphere up to 35 °N/S than the
other data records. Thus, the reason for the bias observed
in figure 6 must mainly be caused by observations
beyond 35 °N/S. For 2015, zonalmeans of GSMaP exhi-
bit minimum mean precipitation beyond ∼40 °N/S
(figure 4) and it seems that this is validmore generally for
the consideredperiod.

GPCP precipitation is distinctly lower for
extremes over the ocean than any other product ana-
lysed. Furthermore, GPCP exhibits a jump to lower
99th percentiles over the ocean in late 2008/early
2009, coinciding with the change in utilisation of
SSM/I and SSMIS data. The potential negative bias
and jump in GPCP extremes does not have any visible
impact on the climatology. GPCP, whose main scopes
include the construction of a reliable climate data
record (CDR), has been developed with priority given
to the stability of data over years [35]. The presented
results indicate that this might not apply to extremes.
Certain products, on the other hand, are not intended
for CDRs but may be targeted more on high-resolu-
tion mapping of precipitation. The product users are
advised to bear in mind that some products are tai-
lored for specific purposes and may not necessarily be
optimal for all applications.

Acknowledgments

HMasunaga and F A Furuzawa acknowledge support
by JSPS KAKENHI Grant Number 19H05704 and

JAXA and M Schröder acknowledges the financial
support by the EUMETSAT member states through
CM SAF. We are grateful to Bob Adler and two
anonymous reviewers for their helpful comments.

Data availability statement

Thedata that support thefindingsof this studyareopenly
available at https://doi.org/10.14768/06337394-73A9-
407C-9997-0E380DAC5598 [22].

ORCID iDs

HirohikoMasunaga https://orcid.org/0000-0002-
6336-5002
Marc Schröder https://orcid.org/0000-0002-
9693-7812
Elke Rustemeier https://orcid.org/0000-0001-
7657-1588

References

[1] Gruber A and Levizzani V (ed) 2008Assessment of global
precipitation products WCRPSERIES ReportNo. 128 and
WMOTD-No. 1430,Geneva, Switzerland:WMO

[2] Tapiador F J et al 2012Global precipitationmeasurement:
methods, datasets and applicationsAtmos. Res. 104 70–97

[3] GehneM,Hamill TM,Kiladis GNandTrenberthKE 2016
Comparison of global precipitation estimates across a range of
temporal and spatial scales J. Clim. 29 7773–95

[4] Maggioni V,Meyers P andRobinsonM2016A review of
merged high resolution satellite precipitation product
accuracy during the tropical rainfallmeasuringmission
(TRMM)-Era J. Hydrometeorol. 17 1101–17

[5] SunQ,MiaoC,DuanQ,AshouriH, Sorooshian S andHsuK-L
2018A review of global precipitation data sets: data sources,
estimation, and intercomparisonsRev. Geophys. 56 79–107

[6] AghaKouchakA, Behrangi A, Sorooshian S,HsuK and
Amitai E 2011 Evaluation of satellite-retrieved extreme
precipitation rates across the central United States J. Geophys.
Res. 116D02115

[7] Serrat-Capdevila A,MerinoAM,Valdes J B andDurcikM
2016 Evaluation of the performance of three satellite
precipitation products over AfricaRemote Sens. 8 836

[8] HeroldN, Behrangi A andAlexander LV 2017 Large
uncertainties in observed daily precipitation extremes over
land J. Geophys. Res.: Atmos. 22 668–81

[9] SekaranomABandMasunagaH2019Originsof heavy
precipitationbiases in theTRMMPRandTMIproducts assessed
withCloudSat and reanalysis data J. Appl.Meteorol. Clim.5837–54

[10] Joyce R J, Janowiak J E, Arkin PA andXie P 2004CMORPH: a
method that produces global precipitation estimates from
passivemicrowave and infrared data at high spatial and
temporal resolution J. Hydrometeorol. 5 487–503

[11] HuffmanG J, Adler R F,MorrisseyMM, BolvinDT,Curtis S,
Joyce R,McGavock B and Susskind J 2001Global precipitation
at one-degree daily resolution frommultisatellite observations
J. Hydrometeorol. 2 36–50

[12] KubotaT et al2007Global precipitationmapusing satellite-
bornemicrowave radiometers by theGSMaPproject: production
andvalidation IEEETrans.Geosci. Remote Sens. 452259–75

[13] AnderssonA, FennigK, KleppC, Bakan S, GrasslH and
Schulz J 2010The hamburg ocean atmosphere parameters and
fluxes from satellite data -HOAPS-3 Earth Syst. Sci. Data 2
215–34

[14] HuffmanG J, Stocker E F, BolvinDT,Nelkin E J andTan J
2015GPM IMERGFinal Precipitation L3Half Hourly 0.1 degree

Table 1. Stability estimates and associated
uncertainties for globalmeans and 99th percentiles
within±50° over ocean and land. Significant stability
estimates are printed bold. Due to the limited
temporal coverage (2001–2013) and the utilisation of
the ensemblemean as reference the stability is only an
estimate of the true stability.

Global ocean

Stability/%/decade

Dataset Globalmean 99th percentile

GPCP −0.7±0.35 −6.7±0.87
HOAPS −1.3±0.75 3.6±0.60
3B42 5.5±0.75 7.4±0.75
CMORPH −0.8±0.29 −3.7±0.72
PERSIANN −2.1±0.34 1.8±0.39
GSMaP −1.1±0.54 −1.9±1.10

Global land

Dataset Stability/%/decade

Globalmean 99th percentile

GPCC −3.1±0.69 0.0±0.44
CHIRPS 0.3±0.55 0.8±1.00
CPC 2.5±0.87 2.1±0.69
GPCP −1.5±0.41 −4.0±0.58
3B42 −0.2±0.43 −1.0±0.43
CMORPH 1.5±0.56 0.0±0.69
PERSIANN −2.5±0.51 −2.8±0.43
GSMaP 5.3±0.52 4.3±0.35

11

Environ. Res. Lett. 14 (2019) 125016

https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598
https://doi.org/10.14768/06337394-73A9-407C-9997-0E380DAC5598
https://orcid.org/0000-0002-6336-5002
https://orcid.org/0000-0002-6336-5002
https://orcid.org/0000-0002-6336-5002
https://orcid.org/0000-0002-6336-5002
https://orcid.org/0000-0002-6336-5002
https://orcid.org/0000-0002-9693-7812
https://orcid.org/0000-0002-9693-7812
https://orcid.org/0000-0002-9693-7812
https://orcid.org/0000-0002-9693-7812
https://orcid.org/0000-0002-9693-7812
https://orcid.org/0000-0001-7657-1588
https://orcid.org/0000-0001-7657-1588
https://orcid.org/0000-0001-7657-1588
https://orcid.org/0000-0001-7657-1588
https://orcid.org/0000-0001-7657-1588
https://doi.org/10.1016/j.atmosres.2011.10.021
https://doi.org/10.1016/j.atmosres.2011.10.021
https://doi.org/10.1016/j.atmosres.2011.10.021
https://doi.org/10.1175/JCLI-D-15-0618.1
https://doi.org/10.1175/JCLI-D-15-0618.1
https://doi.org/10.1175/JCLI-D-15-0618.1
https://doi.org/10.1175/JHM-D-15-0190.1
https://doi.org/10.1175/JHM-D-15-0190.1
https://doi.org/10.1175/JHM-D-15-0190.1
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1029/2010JD014741
https://doi.org/10.3390/rs8100836
https://doi.org/10.1002/2016JD025842
https://doi.org/10.1002/2016JD025842
https://doi.org/10.1002/2016JD025842
https://doi.org/10.1175/JAMC-D-18-0011.1
https://doi.org/10.1175/JAMC-D-18-0011.1
https://doi.org/10.1175/JAMC-D-18-0011.1
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1109/TGRS.2007.895337
https://doi.org/10.1109/TGRS.2007.895337
https://doi.org/10.1109/TGRS.2007.895337
https://doi.org/10.5194/essd-2-215-2010
https://doi.org/10.5194/essd-2-215-2010
https://doi.org/10.5194/essd-2-215-2010
https://doi.org/10.5194/essd-2-215-2010


x 0.1 degree V06, Greenbelt,MDGoddard Earth SciencesData
and Information Services Center (GESDISC) (https://doi.
org/10.5067/GPM/IMERG/3B-HH/06)

[15] AshouriH,HsuK-L, Sorooshian S, Braithwaite DK,
KnappKR,Cecil LD,Nelson BR and PratOP 2015
PERSIANN-CDR: daily precipitation climate data record
frommulti-satellite observations for hydrological and climate
studiesBull. Am.Meteorol. Soc. 96 69–83

[16] RocaR, TaburetN, Lorant E, ChambonP, AlcobaM,
BrogniezH, Cloché S, Dufour C, GossetM andGuilloteauC
2018Quantifying the contribution of theMegha-Tropiques
mission to the estimation of daily accumulated rainfall in the
TropicsQ. J. R.Meteorol. Soc 144 (Suppl. 1) 49–63

[17] HuffmanG J, Adler R F, BolvinDT,GuG,Nelkin E J,
BowmanKP,HongY, Stocker E F andWolff DB 2007The
TRMMMulti-satellite precipitation analysis: quasi-global,
multi-year, combined-sensor precipitation estimates atfine
scale J. Hydrometeorol. 8 38–55

[18] FunkC et al 2015The climate hazards infrared precipitation
with stations—a new environmental record formonitoring
extremes Sci. Data 2 1–21

[19] Xie P, Yatagai A, ChenM,Hayasaka T, FukushimaY, LiuC and
Yang S 2007A gauge-based analysis of daily precipitation over
East Asia J. Hydrometeorol. 8 607–26

[20] Becker A, Finger P,Meyer-Christoffer A, Rudolf B, SchammK,
SchneiderU andZieseM2013Adescription of the global land-
surface precipitation data products of the global precipitation
climatology centre with sample applications including
centennial (trend) analysis from1901–present Earth Syst. Sci.
Data 5 71–99

[21] ZieseM, Rauthe-SchöchA, Becker A, Finger P,
Meyer-Christoffer A and SchneiderU 2018GPCCFull Data
Daily Version 2018 at 1.0°: daily Land-Surface Precipitation
fromRain-Gauges built onGTS-based andHistoric Data.
(https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100)

[22] RocaR, Alexander LV, Potter G, BadorM, Jucá R,
Contractor S, BosilovichMGandCloché S 2019 FROGS: a
daily 1°×1° gridded precipitation database of rain gauge,
satellite and reanalysis products Earth Syst. Sci. Data 11
1017–35

[23] ZhangX, Alexander L,Hegerl GC, Jones P, TankAK,
PetersonTC, Trewin B andZwiers FW2011 Indices for
monitoring changes in extremes based on daily temperature
and precipitation dataWIREsClim. Change 2 851–70

[24] SchröderM et al 2019TheGEWEXwater vapor assessment of
global water vapour and temperature data records from
satellites and reanalysesRemote Sens. 11 251

[25] PressWH,Teukolsky S, VetterlingWTand Flannery B P 1992
Numerical Recipes in C. The Art of Scientific Computing 2nd edn
(Cambridge: CambridgeUniversity Press)

[26] WilksD S 2011 StatisticalMethods in the Atmospheric Sciences
3rd edn (Oxford: Acad. Press)

[27] Mieruch S, SchröderM,Noel S and Schulz J 2014Comparison
of decadal global water vapor changes derived from
independent satellite time series J. Geophys. Res.: Atmos. 119
12489–99

[28] FunkC,Verdin A,Michaelsen J, Peterson P, PedrerosD and
HusakG 2015A global satellite-assisted precipitation
climatology Earth Syst. Sci. Data 7 275–87

[29] AllanRP and SodenB J 2008Atmospheric warming and the
amplification of precipitation extremes Science 321 1481–4

[30] Adler R F, GuG, SapianoM,Wang J-J andHuffmanG J 2017
Global precipitation:means, variations and trends during the
satellite era (1979–2014) Surv. Geophys. 38 679–99

[31] GuG,Adler R F,HuffmanG J andCurtis S 2007Tropical
rainfall variability on interannual-to-interdecadal/longer-
time scales derived from theGPCPmonthly product J. Clim.
20 4033–46

[32] StephensGL et al 2018Regional intensification of the tropical
hydrological cycle during ENSOGeophys. Res. Lett. 45 4361–70

[33] RocaR 2019 Estimation of extreme daily precipitation
thermodynamic scaling using gridded satellite precipitation
products over tropical landEnviron. Res. Lett. 14 095009

[34] Xie P, Joyce R,Wu S, Yoo S-H, YaroshY, Sun F and Lin R 2017
Reprocessed, bias‐corrected CMORPHglobal high-resolution
precipitation estimates from 1998 J. Hydrometeorol. 18
1617–41

[35] Adler R F et al 2018The global precipitation climatology
project (GPCP)monthly analysis (NewVersion 2.3) and a
review of 2017 global precipitationAtmosphere 9 138

12

Environ. Res. Lett. 14 (2019) 125016

https://doi.org/10.5067/GPM/IMERG/3B-HH/06
https://doi.org/10.5067/GPM/IMERG/3B-HH/06
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1002/qj.3327
https://doi.org/10.1002/qj.3327
https://doi.org/10.1002/qj.3327
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1175/JHM560.1
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1175/JHM583.1
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.5194/essd-5-71-2013
https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100
https://doi.org/10.5194/essd-11-1017-2019
https://doi.org/10.5194/essd-11-1017-2019
https://doi.org/10.5194/essd-11-1017-2019
https://doi.org/10.5194/essd-11-1017-2019
https://doi.org/10.1002/wcc.147
https://doi.org/10.1002/wcc.147
https://doi.org/10.1002/wcc.147
https://doi.org/10.3390/rs11030251
https://doi.org/10.1002/2014JD021588
https://doi.org/10.1002/2014JD021588
https://doi.org/10.1002/2014JD021588
https://doi.org/10.1002/2014JD021588
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.5194/essd-7-275-2015
https://doi.org/10.1126/science.1160787
https://doi.org/10.1126/science.1160787
https://doi.org/10.1126/science.1160787
https://doi.org/10.1007/s10712-017-9416-4
https://doi.org/10.1007/s10712-017-9416-4
https://doi.org/10.1007/s10712-017-9416-4
https://doi.org/10.1175/JCLI4227.1
https://doi.org/10.1175/JCLI4227.1
https://doi.org/10.1175/JCLI4227.1
https://doi.org/10.1029/2018GL077598
https://doi.org/10.1029/2018GL077598
https://doi.org/10.1029/2018GL077598
https://doi.org/10.1088/1748-9326/ab35c6
https://doi.org/10.1175/JHM-D-16-0168.1
https://doi.org/10.1175/JHM-D-16-0168.1
https://doi.org/10.1175/JHM-D-16-0168.1
https://doi.org/10.1175/JHM-D-16-0168.1
https://doi.org/10.3390/atmos9040138

	1. Introduction
	2. Data
	3. Climatology versus extremes
	3.1. Histogram
	3.2. Global distribution
	3.3. Time series

	4. Discussion and summary
	Acknowledgments
	Data availability statement
	References



