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[1] This study examines variability in marine low cloud properties derived from
semiglobal observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as
linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from
the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the
Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model and is used
to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/
NCAR reanalysis and represents the background thermodynamic environment in which
the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in
polluted (high-AI) and strong inversion (high-LTS) environments. Statistical
quantification shows that cloud droplet size is better correlated with AI than it is with LTS.
Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases.
This correlation does not support the hypothesis or assumption that constant or increased
CLWP is associated with high aerosol concentrations. Global variability in corrected
cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well
explained by LTS, while both AI and LTS are needed to explain local variability in
CCA. Most of the local correlations between AI and cloud properties are similar to the
results from the global statistics, while weak anomalous aerosol-cloud correlations
appear locally in the regions where simultaneous high (low) AI and low (high) LTS
compensate each other. Daytime diurnal cycles explain additional variability in cloud
properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and
CLWP have weak diurnal cycles that differ between clean and polluted environments.
The combined results suggest that investigations of marine low cloud radiative forcing and
its relationship to hypothesized aerosol indirect effects must consider the combined
effects of aerosols, thermodynamics, and the diurnal cycle.
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1. Introduction

[2] Global low cloud properties critically control the
Earth’s radiation budget and hydrological cycle. Marine
low clouds have been extensively observed in the descend-
ing branch of the Hadley Circulation, where large-scale
subsidence occurs [Klein and Hartmann, 1993]. Marine low
clouds have an annually and globally averaged net cooling
effect of �15 (W/m2) [Hartmann et al., 1992]. A 4%
increase in low cloud cover could offset the anthropogenic
greenhouse gas warming due to a doubling of CO2 [Slingo,
1990]. The National Research Council [2005] highlighted

the importance of cloud radiative effects within the climate
system. Variability in global low cloud fields modulates the
warm rain rate, which is estimated to account for 31% of the
total surface precipitation over the tropics [Lau and Wu,
2003]. This large effect on the Earth’s climate prompts
scientists to examine the variability of low cloud properties
as linked to various meteorological parameters, such as sea
surface temperature (SST), relative humidity (RH) near
cloud layers, and lower-tropospheric stability (LTS) [e.g.,
Weare, 1994; Klein and Hartmann, 1993; Park and Leovy,
2004; Klein, 1997]. Comparisons of different parameters
used in cloud models show that no single meteorological
parameter explains more than 13% of the variance in low-
cloud amounts, and that multiple regressions using a com-
bination of different parameters do not increase the
explained variance [Klein, 1997].
[3] Marine low clouds have a strong diurnal cycle due to

radiation-driven turbulence in the cloud-capped marine
boundary layer [e.g., Driedonks and Duynkerke, 1989]. In
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the early morning, solar radiation starts heating the subcloud
layer, while longwave emission cools the cloud top. The
combination of longwave cooling and shortwave heating
drives turbulent mixing that (1) destabilizes the cloud
layer separately from the rest of the boundary layer and
(2) induces entrainment of dry air that thins the cloud layer
in a complex manner. The isolated layer progressively thins
the cloud during the late morning and into the afternoon
(see the review given by Driedonks and Duynkerke [1989]).
This diurnal cloud cycle was captured in the Atlantic
Stratocumulus Transition Experiment (ASTEX) [Cieselski
et al., 2001], in the First International Satellite Cloud
Climatology Project Regional Experiment (FIRE) [Hignett,
1991], and in observations from the California coastal
region [Betts, 1990]. Wood et al. [2002] showed the semi-
global-scale diurnal cycle of the cloud liquid water path
(CLWP) using a 2-year data set from the Tropical Rainfall
Measuring Mission (TRMM) satellite. They demonstrated
that the diurnal cycle generally peaked early in the morning,
but that the timing of those peaks varied slightly in different
geographic regions.
[4] In recent decades, advanced space-borne satellites and

global modeling systems investigated the global distribution
of aerosol concentrations [Kaufman et al., 2002]. Hygro-
scopic aerosol particles serve as cloud condensation nuclei
(CCN) that initiate the formation of cloud droplets. Higher
concentrations of submicron aerosols are expected to reduce
the average size of cloud droplets, in turn increasing the
cloud albedo under the assumption of constant liquid water
content [Twomey et al., 1984], and could enhance the cloud
liquid water path by inhibiting the precipitation initiation
process [Albrecht, 1989]. These aerosol-cloud-climate link-
ages are called the aerosol indirect effects. Many studies
show a reduction of cloud droplet size associated with high
aerosol concentrations observed in ground-based experi-
ments [e.g., Feingold et al., 2003; Penner et al., 2004] as
well as in satellite imagery [e.g., Kaufman and Fraser,
1997; Nakajima et al., 2001; Bréon et al., 2002; Matsui et
al., 2004a; Kaufman et al., 2005]. Some of the studies
capture rainfall inhibition due to air pollution [Rosenfeld,
1999; Matsui et al., 2004a]. Although many researchers
show links between small cloud droplets and high aerosol
concentrations in the ambient air, they do not consistently
find a dramatic increase in cloud albedo as initially hypoth-
esized, probably because of the complicated feedbacks
involving thermodynamics and below-cloud turbulent mix-
ing processes [Jiang et al., 2002].
[5] Another important aspect of the aerosol effect is that

aerosol particles absorb and scatter radiation, which is
denoted as the aerosol direct effect. Absorbing aerosols,
such as black carbon and mineral dust, could contribute to
high diabatic heating in the atmosphere that often enhances
cloud evaporation (the semidirect effect) [Ackerman et al.,
2000; Koren et al., 2004; Krüger and Graßl, 2004].
Atmospheric diabatic heating could strengthen inversions,
which could inhibit the cyclogenesis process and conse-
quently constrain hurricane tracks [Dunion and Velden,
2004]. Ramanathan et al. [2001] suggested that a combi-
nation of the aerosol direct and indirect effects could
weaken the hydrological cycle, which could be a major
environmental issue in this century.

[6] To summarize, the large-scale thermodynamic field,
the radiation-driven diurnal cycle, and aerosol-cloud inter-
actions are all critical in understanding the variability of
global marine low cloud properties. This study attempts to
incorporate these aspects together to arrive at a deeper
understanding of marine low cloud variability. This study
extends the analysis by Matsui et al. [2004a] to an
annual cycle (section 2), includes different aerosol data sets
(section 2.1), examines not only cloud droplet size but also
cloud liquid water path and cloud albedo (section 2.3),
statistically quantifies the relationship on the global scale
(section 3.1) and local scale (section 3.2), and examines the
diurnal cycle in regions with different thermodynamic
environments and aerosol concentrations (section 3.3).

2. Data Sets and Method

2.1. Lower-Tropospheric Stability (LTS) From the
NCEP/NCAR Reanalysis

[7] A large amount of latent heat release over the warm
sea surface drives upward motion in the equatorial regions
and large-scale subsidence in the subtropics. The large-scale
subsidence over cold sea surface temperatures (SST) creates
a strong inversion in the lower troposphere. Consequently,
cool, moist air below the inversion layer supports an
increase in the relative humidity (RH) and, thus, frequent
cloudiness. The magnitude of the inversion strength can be
measured as the potential temperature difference between
the atmosphere at the 700-mb level and the surface, denoted
as lower-tropospheric stability (LTS) [Klein and Hartmann,
1993].
[8] Klein [1997] found that LTS is highly correlated with

cloud amount, although other parameters such as lower-
tropospheric relative humidity are important as well. This
study focuses on LTS as an indicator of the thermodynamic
environment, as was done in the previous study [Matsui et
al., 2004a], where low-cloud properties were investigated in
terms of aerosols and LTS. While the role of other param-
eters is certainly important, their impact on low clouds is not
considered in the present paper, as we wanted to focus
specifically on LTS. LTS is also more readily derived from
remote sensing soundings or objective analyses, in compar-
ison with subgrid parameters, such as cloud updraft velocity
or turbulent kinetic energy. In this study, LTS is derived
from the NCEP/NCAR reanalysis data set (2.5� � 2.5� grid
space) [Kalnay et al., 1996]. Although LTS can be corre-
lated with aerosols on the regional scale, these correlations
tend to be canceled out on the global scale. For example,
global linear correlations between AI and LTS are �0.016
and 0.024 for the MODIS and GOCART cases. respectively.
These values are significant at 0.05 level, but are very small.
Regional correlations of LTS with AI can account for
regional anomalies in the dependence of cloud properties
on AI and LTS, as discussed later.
[9] Figure 1 shows the annual mean and standard devi-

ation of the global distribution of LTS sampled from March
2000 to February 2001 at the same sampling rate as that of
the cloud data set. LTS varies season-by-season and year-
by-year. Regions with high LTS (strong inversions) are
frequently observed off the coast of California, Namibia,
and Chile. Those areas are located in the eastern parts of
major oceans (Figure 1). Low-LTS regions are found in the
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tropics over warm SSTs, where surface energy flux and
mass convergence create strong vertical mixing in the
boundary layer. LTS exhibits large standard deviations in
midlatitude regions, in comparison to those in seen in the
tropics (Figure 1), because of propagating synoptic fronts
and seasonal shifts of the Hadley cell.

2.2. Aerosol Index From MODIS and GOCART

[10] In this study, aerosol concentration is represented by
the Aerosol Index (AI), which is the product of aerosol
optical depth (AOD) and the Ångstrom exponent. AI is
better correlated with column aerosol concentrations and
cloud properties than is AOD alone [Nakajima et al., 2001;
Bréon et al., 2002]. Global aerosol distributions from
satellite retrievals and global chemistry transport model
calculations are used in this study, since both data have
different advantages and disadvantages [Yu et al., 2003;
Chin et al., 2004; Matsui et al., 2004b]. The satellite data
set used to compute AI is the Moderate Resolution Imaging
Spectroradiometer (Terra MODIS) Level-3 (collection 4)
instantaneous AOD at 0.55 mm and Ångstrom exponent
between 0.55 mm and 0.87 mm, which are archived on a
global 1� � 1� latitude-longitude grid. A comprehensive
description of the algorithm, sensor specification,
validation, and data sets is summarized by Remer et al.
[2005]. The other data set used to compute AI is from the
Goddard Chemistry Aerosol Radiation and Transportation

(GOCART) model, which is a global chemical-aerosol-
transport model driven by the Goddard Earth Observing
System Data Assimilation System (GEOS DAS) global
analysis (2� � 2.5� grid space). It prognoses a global
distribution of sulfate and its precursors, organic carbon,
black carbon, mineral dust, and sea salt (see details given by
Chin et al. [2002, 2004]). This study computes AI from
GOCART predictions of daily AOD at 0.55 mm and
Ångstrom exponent between 0.55 mm and 0.90 mm. The
Ångstrom exponent (� d logAOD

d logl , where l is the wavelength
at which AOD is determined) is an indicator of the size
distribution of aerosols; e.g., fine-mode particulate matter,
such as sulfate and organic carbon, tend to be associated
with high Ångstrom exponents, whereas the size distribu-
tions of coarse-mode particles, such as large sea salt and
dust, tend to have low (near-zero) Ångstrom exponents.
[11] While satellite estimates of AOD are based on the

measured instantaneous top-of-atmosphere (TOA) radiance,
estimates of AOD from global chemistry transport models
are calculated on the basis of aerosol and precursor emis-
sions inventories, atmospheric objective analysis, and sim-
ulated aerosol optical and microphysical properties.
Intercomparison of AOD at 0.55 mm between MODIS
retrievals and GOCART simulations has been reported for
global and regional scales [Yu et al., 2003; Chin et al., 2004;
Matsui et al., 2004b]. Figure 2a shows the global distribu-
tion of GOCART and MODIS AI integrated from 1 March

Figure 1. (top) Annual mean and (bottom) standard deviation of lower-tropospheric stability (LTS),
sampled from March 2000 to February 2001. High-LTS (strong inversion) regions are located in the
eastern parts of major oceans.
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2000 to 28 February 2001, whenever MODIS retrievals and
GOCART outputs are simultaneously available. MODIS
and GOCART AI exhibit high spatial coherence on global
scales (correlation: 0.83). High values of AI appear along
the coastlines of Asia, India, eastern United States, and West
Africa. Very small values of AI appear in the remote Indian
and Pacific Oceans. However, local correlations (daily
correlation in 4� � 4� grid boxes) are highly variable in
different regions (Figure 2b). Remote oceans, particularly
the southern portions of the Indian and Pacific Oceans, have
correlations less than 0.2 between MODIS and GOCART
AI, probably because of the low, and therefore more
uncertain, AI values.
[12] The GOCART model explicitly simulates different

aerosol species in four-dimensional fields. When we
convert the GOCART-predicted AOD to AI, the summa-
tion of the contributions of sulfate, organic carbon, and
black carbon represents approximately 97% of the total
AI. Dust and sea salt together represent about 3% of the
total AI, because the Ångstrom exponents of the assumed
size distributions for those species are close to zero.
Large particles of sea salt and sulfate-coated dust serve
as giant cloud condensation nuclei (GCCN). GCCN
potentially enhance the cloud drizzle process in environ-
ments characterized by high CCN concentrations, but
probably have little effect in low-CCN-concentration
environments where drizzle is active regardless of the
presence of GCCN [Feingold et al., 1999]. However, it is
not possible using AI to explicitly investigate the poten-
tial role of GCCN, as investigated by Feingold et al.
[1999]. Emissions of sulfate and sulfate precursors and of
organic carbon are primarily from industrial and agricul-
tural activities. Therefore AI derived from multispectral
AOD allows us to focus on the anthropogenic aerosol
impact on marine low cloud. Although the size distribu-
tions assumed in the MODIS retrievals are slightly
different from those used in GOCART, the correspon-
dence between aerosol types and concentrations and
MODIS AI can be similarly interpreted.
[13] The vertical distribution of AI remains uncertain

in satellite-based aerosol-cloud interaction studies [Matsui
et al., 2004a; Bréon et al., 2002; Nakajima et al., 2001;
Sekiguchi et al., 2003]. More accurate assessments will
be available when the multisatellite A-Train platform is
established [Stephens et al., 2002; Kaufman et al.,
2003].

2.3. Marine Low Cloud Properties From the
TRMM Satellite

[14] Masunaga et al. [2002a] proposed a new algorithm
that simultaneously derives different cloud properties
through a combined use of data from the TRMM Micro-
wave Imager (TMI) and Visible/Infrared Radiance Imager
(VIRS). First, VIRS radiances at 0.63 micron, 3.7 micron,
and 10.8 micron are used to derive low-cloud optical
depths, cloud top droplet effective radius (Re(top)), and
cloud top temperature [Kawamoto et al., 2001; GTR 1.0
package from T. Y. Nakajima, personal communication,
2003]. Second, TMI brightness temperatures at 10.65 GHz,
19.35 GHz, and 37.0 GHz yield the column water vapor and
cloud liquid water path (CLWP) for the VIRS-derived cloud
top temperatures and cloud fractions. We updated the look-

up table used by the microwave algorithm so that it
allows realistic variability of the water vapor and tem-
perature profiles to improve the products obtained by
Masunaga et al. [2002a] and Matsui et al. [2004a]. The
TMI-derived CLWP (CLWPTMI) with the VIRS-derived
optical thickness (tVIRS) provide the cloud droplet effec-
tive radius (Re) via

Re columnð Þ ¼ 1:5 CLWPTMI

rwtVIRS
;

where rw represents water density. Re(column) represents
column-integrated Re, since microwave brightness tem-
perature and visible radiance do not suffer from saturation
within any cloud thickness of marine low clouds (see
the details of the algorithm given by Masunaga et al.
[2002a]). Simultaneous analysis of Re(top) and Re(column)
provides more information to examine warm rain processes
[Masunaga et al., 2002b; Matsui et al., 2004a].
[15] Klein and Hartmann [1993] showed that the low-

cloud fraction is the primary parameter controlling the
surface cooling effect. While many studies focus on the
change in cloud optical depth and cloud fraction separately,
this study uses cloud amount defined by the corrected cloud
albedo, CCA:

CCA ¼ Acloud *CF;

where CF is the low-cloud fraction in a 1 � 1� box
derived from VIRS 2km-footprint pixels, and Acloud is the
cloud albedo, which is expressed for a plane-parallel
cloud in a two-stream radiative transfer model [Hobbs,
1993] as,

Acloud ¼
tVIRS

tVIRS þ 6:7
:

CCA accounts for cloud radiative forcing as the
combined effect of the cloud optical depth and cloud
fraction.
[16] To define a VIRS 2km-footprint pixel that is over-

cast, the following criteria must be satisfied simultaneously
[Kawamoto et al., 2001]: (1) Radiances in channel 1 (l =
0.623 mm), channel 2 (l = 1.610 mm), and channel 3 (l =
3.784 mm) are all positive; (2) solar zenith angle must be
within 0 � 60�; (3) reflectance in channel 1 is greater than
the sum of 0.1 and the ocean albedo value; (4) brightness
temperature of channel 4 (l = 10.826 mm) is less than the
sea surface temperature; (5) brightness temperature of
channel 4 (l = 10.826 mm) is greater than brightness
temperature of channel 5 (l = 12.028 mm); and (6) 3 �
3-window standard deviations of channel 1 is less than
100 Wm�2ster�1mm�1, and 3 � 3-window standard devi-
ations of brightness temperature of channel 5 is also less
than 100 K, indicating a horizontally homogeneous pixel.
Cloud pixels with high ambient aerosols were removed
from the analysis by taking the 95% of the total PDF
(Figure 3). These data screening procedures should ensure
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separation between cloudy pixels and pixels with very
high aerosol concentrations.

2.4. Method of Analysis

[17] This section describes the various statistical method
and results. The sampling and statistical methods are as
follows.
[18] 1. Sample the TRMM-derived low cloud properties,

MODIS AI, GOCART AI, and NCEP LTS, only when they
are simultaneously available. Note that the NCEP LTS is
temporally interpolated to coincide with the TRMM satellite
overpasses. MODIS AI values are instantaneous values at
approximately 10:30 am local time, and GOCART AI
values are daily averages. Although a time lag up to ±5 hour
exists between the MODIS and TRMM overpasses, temporal
autocorrelations of aerosol extinction are still very high in this
range [Anderson et al., 2003].
[19] 2. Generate the probability density function (PDF) of

MODIS AI, GOCART AI and NCEP LTS from the total
samples (Figure 3).
[20] 3. Select 95% of the most frequent ranges from the

total PDF by removing ±2.5% of the smallest and largest
values for MODIS AI, GOCART AI and NCEP LTS. For a
normal distribution, 95% of the total PDF is equivalent to
the range of four standard deviations (4s). These ranges are
represented as dAI95% (0.41 for MODIS; 0.26 for
GOCART) and dLTS95% (10.5K), respectively (Figure 3).
[21] 4. Similarly, select 95% of the most frequent ranges

for Re(column), CLWP, and CCA. These ranges are

represented as dRe(column)95%(50.0 mm), dCLWP95%

(188.0 g/m2), and dCCA95% (0.37) (Figure 3). These values
are used to examine how well AI and LTS can explain the
variability of cloud properties.
[22] 5. Select the sampling bins for MODIS AI,

GOCART AI and NCEP LTS as 10% of dAI95% and
dLTS95%, respectively. These are represented as dAIbin
(0.04 for MODIS; 0.026 for GOCART) and dLTSbin
(1.05 K).
[23] 6. Compute mean values of Re(column), CLWP, and

CCA for each bin (dAIbin and dLTSbin) of the MODIS AI,
GOCART AI and NCEP LTS. Mean values are represented
as Re columnð Þ, CLWP, and CCA.
[24] The above symbols and variables are summarized in

the Notation section. The TRMM overpasses include the
annual cycle from March 2000 to February 2001. Sampling
is significantly concentrated in the subtropics because of the
large amount of marine low cloud in those regions and the
unique overpass pattern of the TRMM satellite (Figure 4).
The sampling weights are identical between the GOCART
and MODIS cases. Sampling was restricted to low clouds,
defined as those which have a cloud top temperature above
273 K.
[25] It is worthwhile to note that Re(top) is generally

larger than Re(column) for nonprecipitating clouds, while
Re(top) can be smaller than Re(column) for precipitating
clouds [Masunaga et al., 2002a; Matsui et al., 2004a].
Figure 3b shows the mode of Re(column) appear to be

Figure 3. Probability density function (PDF) of (a) AI and LTS and (b) cloud properties. Variability of
95% of the total PDF is shown for each variable.
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greater than the Re(top). This is possibly explained by the
sampling biases in precipitating clouds and/or algorithm
biases. We must reexamine Re(column)-Re(top) relation-
ship and algorithm for different types of clouds in different
climatological regions, when the global-scale vertical pro-
file of cloud properties become available [Stephens et al.,
2002]. Nevertheless, this uncertainty fundamentally does
not affect our analysis, since this study does not focus on the
comparison between Re(top) and Re(column).

3. Results

3.1. Global Statistics Among Cloud Properties, LTS,
and AI

[26] Figure 5a shows the variability of Re columnð Þ as a
function of LTS and AI. Clean (low-AI) environments in
regions with low LTS tend to have the largest Re columnð Þ,
while polluted (high-AI) environments with high LTS tend
to have the smallest Re columnð Þ. Table 1 shows the changes
in cloud properties for dAI95% and dLTS95%. For example,
dRe columnð Þ95% for dAI95% and dLTS95% are defined as

dRe columnð Þ95% ¼

P
LTSbin

Re columnð Þlow AIbin � Re columnð Þhigh AIbin

� �
* sampling#LTSbin

P
LTSbin

sampling#LTSbin

P
AIbin

Re columnð Þlow LTSbin � Re columnð Þhigh LTSbin

� �
* sampling#AIbin

P
AIbin

sampling#AIbin

8>>>>>>>>><
>>>>>>>>>:

where Re columnð Þlow_AIbin is the Re columnð Þ in the lowest

bin of AI, Re columnð Þhigh_AIbin is the Re columnð Þ in the

highest bin of AI, Re columnð Þlow_LTSbin is the Re columnð Þ
in the lowest bin of LTS, and Re columnð Þhigh_LTSbin is the
Re columnð Þ in the highest bin of LTS. Similar definitions
are applied to CLWP and CCA.
[27] This result shows that an increase in dAI95% corre-

sponds to a reduction of 12.24 mm in Re columnð Þ in the
MODIS case and 12.19 mm in the GOCART case, explain-
ing 24.4% and 24.3% respectively of dRe(column)95%
(50.0 mm) (Table 1). Similarly, an increase in dLTS95%
corresponds to a reduction of 8.77 mm in Re columnð Þ in the
MODIS case and 8.35 mm in the GOCART case, explaining

17.5% and 16.6% respectively of dRe(column)95% (50.0 mm)
(Table 1). Note that relationships between LTS and cloud
properties appear to be slightly different between the
MODIS and GOCART cases, although LTS is independent
of AI in the global sampling. This is because differences in
global distribution of AI between MODIS and GOCART
cause slightly different sampling of background LTS. In
both cases, however, the global distribution of cloud droplet
size is correlated better with AI than it is with LTS. This
result can be applied to the warm rain process, since the
process can be diagnosed by the droplet effective size
[Matsui et al., 2004a].
[28] Figure 5a shows that the relationships between

Re(column) and AI are nonlinear, whereas the Re-LTS
slopes are approximately linear. For example, Re columnð Þ
appears to decline more rapidly with increases in AI for
small AI, whereas increases in AI at high AI do not reduce
the cloud droplet size effectively. This trend for small AI is
important, because small values of AI are much more
frequent than high values (Figure 3a). Thus we additionally
define changes in Re columnð Þ between neighboring bins

(dAIbin and dLTSbin), weighted by the frequency distribution
of the sampling number, which is strongly peaked near the
mean value of the LTS PDF and low AI values (Figure 3a):

dRe columnð Þfreq ¼

P
LTSbin

P
AIbin

dRe columnð Þ * sampling#bin

P
LTSbin

P
AIbin

sampling#bin

ð2Þ

The similar definition is applied to CLWP and CCA. This
value represents the frequency weighted mean values of the
change in clouds properties over the globe. Table 2 shows
dRe columnð Þfreq (�1.80 and �0.94, respectively) as a
function of dAIbin and dLTSbin. dAIbin explains twice the

Figure 4. Global distribution of sampling number. Sampling numbers are significantly concentrated in
the subtropics because of the large amount of marine low cloud and the unique overpass pattern of the
TRMM satellite.

ð1Þ
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variability in Re columnð Þ that is attributed to dLTSbin for
both the MODIS and GOCART cases, showing consistently
that cloud droplet size is correlated better with AI than it is
with LTS by using the definition (1) and (2).

[29] Figure 5b shows the variability of CLWP as a
function of NCEP LTS and AI. While higher LTS corre-
sponds to slightly lower CLWP for all AI bins, it is clear
that AI is more strongly correlated with CLWP. An increase

Figure 5. Global statistics of mean warm cloud properties ((a) column droplet effective radius, (b) cloud
liquid water path, and (c) corrected cloud albedo) as functions of LTS and AI.
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in dAI95% corresponds to a reduction of 39.2 g/m2 of CLWP
in the MODIS AI case and 43.56 g/m2 in the GOCARTcase,
explaining 20.8% and 22.6% of dCLWP95% (188.0 g/m2)
(Table 1). On the other hand, an increase in dLTS95%
corresponds to a reduction of 8.51 g/m2 of CLWP in the
MODIS case and 5.04 g/m2 in the GOCART case, which
explains only 4.5% and 2.6% of dCLWP95% (188.0 g/m2),
respectively (Table 1). Table 2 also shows that CLWP is
more strongly correlated with the AI than it is with LTS by
using the definition (2). Note that we also tested the VIRS-
derived CLWP and found similar results (not shown here).
Han et al. [1998] examined data from the Advanced Very
High Resolution Radiometer (AVHRR) with the same
273 K cloud top temperature threshold for low cloud
sampling, and also found that the liquid water path
decreases with decreasing cloud droplet size. On the other
hand, Sekiguchi et al. [2003] examined AVHRR data
corresponding to a different low cloud top temperature
threshold (below 257 K), and found that the liquid water
path increases with decreasing cloud droplet size. These
different results suggest that different sampling criteria in
terms of cloud top temperature could be a key issue
leading to qualitative differences in the relationships be-
tween liquid water path and cloud droplet size.
[30] Twomey et al. [1984] assumed that liquid water path

remained constant as aerosol concentrations increased,
while Albrecht [1989] hypothesized that high aerosol con-
centrations could increase CLWP via a less efficient pre-
cipitation process. Originally both hypotheses were built
assuming that only microphysical processes affect cloud
properties. The aerosol semidirect effect [Ackerman et al.,
2000; Koren et al., 2004; Krüger and Graßl, 2004] is one
possible reason for the low CLWP with high aerosol
concentrations that we observed in this analysis. Some
model studies proposed microscale dynamic processes that
qualitatively explain this result. For example, Jiang et al.
[2002], using a nonhydrostatic two-dimensional eddy-
resolving model with an explicit microphysics parameteri-
zation, found that drizzle inhibition due to air pollution
results in a stable boundary layer below cloud, which
reduces the moisture supply and leads to low CLWP. In
the clean environment, enhanced drizzle evaporation below

the cloud destabilizes the boundary layer, which results in
penetrating cumuli, leading to high CLWP. These relation-
ships must be further tested with different observations and
a number of simulation studies.
[31] Finally, Figure 5c shows variations in CCA with LTS

and AI. There is a strong, linear correlation with LTS. An
increase in dLTS95% corresponds to an increase of CCA by
0.115 in the MODIS case and by 0.117 in the GOCART
case, which explains 31.2% and 31.8% respectively of
dCCA95% (0.37) (Table 1). On the other hand, the AI-
CCA relationship appears to be nonlinear and different
between the MODIS and the GOCART cases. An increase
in dAI95% corresponds to a very slight increase of CCA
(about 0.039 in the MODIS case and 0.026 in the GOCART
case), and explains 10.6% and 7.1% respectively of
dCCA95% (0.37) (Table 1). For high-AI bins, CCA-AI
correlation slopes are nearly zero and/or slightly negative,
while positive CCA-AI correlation slopes exist for low-AI
bins. Although we used CCA instead of cloud optical
depth, this result is similar to that inferred from satellite
measurements of cloud optical depth over the Amazon basin
[Kaufman and Fraser, 1997]. By using the definition (2),
the correlation slope of MODIS AI with CCA is comparable
to the correlation of LTS with CCA (Table 2), suggesting
that the aerosol-CCA correlation can be captured frequently
over the globe. However, this is not captured in the
GOCART case; that is, AI has a weak correlation with the
CCA by using both the definition (1) and (2). We conduct
further tests of these relationships on a local scale in the
next section.
[32] Note that partially cloudy VIRS pixels could result in

biases in the retrieved cloud properties. Cloud optical depth
and cloud top temperature could have a negative bias, while
cloud droplet radius can be overestimated, from a partially
cloudy VIRS pixel. Variation of AI in a partially cloudy
pixel can affect the values of estimated cloud properties to
some degree that has not yet been quantified.

3.2. Local Statistics Between Cloud Properties, AI,
and LTS

[33] In the previous section, we found strong relation-
ships between cloud properties, AI, and LTS on the global

Table 2. Frequency Weighted Mean Values of the Change in Cloud Properties With Increases in dAIbin and dLTSbin Over the Globea

Forcing

dRe columnð Þfreq, mm dCLWPfreq, g/m
2

dCCAfreq

MODIS GOCART MODIS GOCART MODIS GOCART

dAIbin �1.80 �1.58 �3.85 �5.04 0.0136 0.0016
dLTSbin �0.94 �0.85 �0.62 �0.37 0.0135 0.0133

aChanges in cloud properties are weighted by the sampling number as described in the text.

Table 1. Mean Changes in Cloud Properties With Increases in dAI95% and dLTS95%

Forcing

dRe columnð Þ95%, mm (
dRe columnð Þj j

d Re columnð Þ95%
* 100) dCLWP95%, g/m

2 (
dCLWPj j

dCLWP95%
* 100) dCCA95%(

dCCAj j
dCCA95%

*100)

MODIS GOCART MODIS GOCART MODIS GOCART

dAI95% �12.24 (24.4%) �12.19 (24.3%) �39.24 (20.8%) �42.56 (22.6%) 0.039 (10.6%) 0.026 (7.1%)
dLTS95% �8.77 (17.5%) �8.35 (16.6%) �8.51 (4.5%) �5.04 (2.6%) 0.115 (31.2%) 0.117 (31.8%)
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scale, and the correlation slopes are quantified by the
definition (1) and (2). In this section, we examine how
those relationships vary in different geographical regions.
Sekiguchi et al. [2003] examined local correlations using the
AVHRR and the POLarization and Directionality of the
Earth’s Reflectances (POLDER) instrument, and showed
that strong correlation between aerosols and cloud proper-
ties exist along coastlines where continental air masses meet
maritime clean air. We derive the linear correlation coeffi-
cient in each 4� box on a global grid for the same annual
sampling period used in the previous section. The variabil-
ity of local positive or negative correlation reported by
Sekiguchi et al. [2003] is seen in this study to depend on
both aerosol and thermodynamic variability. Positive (neg-
ative) correlations are showed in red (blue) shades, and
statistically insignificant correlations (approximately, jrj <
0.05) with t-distribution critical level set to 0.05 are shown
in white (Figure 6).
[34] Figure 6a shows the correlation map between

Re(column) and MODIS AI (left), GOCART AI (center),
and NCEP LTS (right). Strong negative correlations (blue)
appear in the subtropics in the Northern Pacific Ocean, in
the Indian Ocean, and in most of the Atlantic Ocean.
Correlation maps for the MODIS and GOCART cases show
general agreement with the global statistics discussed in
section 3.1. Weak correlations (white) and slightly positive
correlations (red) appear in the remote Southern Pacific
Ocean in the MODIS case, in the middle of the Pacific
Ocean in the GOCART case, and off the west coast of
Africa. In the remote ocean, the correlation coefficient may
be very small because of the small variability in AI and the
low sampling number. Overall correlations are negative,
which was captured in the global statistics (section 3.1).
The LTS-Re(column) correlation also appears to be highly
positive in the subtropics and weak or slightly negative in
the Pacific Ocean. This is because, in subtropical regions,
LTS varies substantially because of propagating midlatitude
fronts and the seasonal shift of the large-scale circulation
(Figure 1). These considerations also explain the weak
correlation in the equatorial regions, where LTS does not
change substantially throughout the year (Figure 1).
[35] Figure 6b shows the local correlation map between

CLWP and MODIS AI (left), GOCART AI (center), and
NCEP LTS (right). Negative correlations (blue) in the
MODIS case appear in the northern subtropics in the Pacific
Ocean, in the coastal zones around the Indian Ocean and
South Africa, and for the northern part of the Atlantic
Ocean. The GOCART case has a slightly larger area of
negative correlations than the MODIS case, which is
consistent with the result discussed in the previous section.
The geographical locations of the negative correlations are,
apparently, coherent with those of Re(column) (Figure 6a).
This suggests that a reduction in cloud droplet size and
cloud liquid water associated with high concentrations of
aerosols occurs simultaneously on a local scale over the
ocean.
[36] Figure 6c shows the local correlation map between

CCA and MODIS AI (left), GOCART AI (center), and
NCEP LTS (right). The MODIS case shows positive corre-
lations over almost the entire domain; that is, the aerosol
indirect effect exists over almost the entire ocean. The
GOCART case shows positive correlations in the northern

part of the Pacific Ocean and off the east coast of North
America, while negative correlations appear off the east
coast of Australia and Africa and in some remote ocean
areas. This result is consistent with the global statistics; the
MODIS case shows stronger correlation between AI and
the CCA than the GOCART case does (section 3.1). Both
the MODIS and the GOCART cases show that the strongest
positive correlation appears in the Northern Pacific, where a
combination of industrial and dust aerosols from East Asia
advect over the ocean. LTS also has a consistently positive
correlation with CCA over the global ocean.
[37] In section 3.1, we found that increases in AI as well

as LTS are accompanied by decreases in cloud droplet size,
decreases in liquid water path, and increases in CCA.
However, in a marine environment, if AI becomes high,
but LTS becomes low, changes in cloud properties can be
offset or very small because of the competition between AI
and LTS. Jiang et al. [2002] and Takemura et al. [2005] also
found that a change in simulated CLWP could depend upon
the large-scale thermodynamic feedback. In section 1, we
stated that AI and LTS are independent on the global scale.
In contrast, they are usually correlated either positively or
negatively on a local scale (Figure 7). In the MODIS case,
negative correlations appear in a large portion of the
southern Pacific Ocean, and positive and negative correla-
tions appear in the Atlantic Ocean. In the GOCART case,
negative and positive correlations also appear in different
regions. Positive AI-LTS correlations mean that high (low)
AI appears with high (low) LTS. For positively correlated
regions, both factors tend to reduce Re(column) and CLWP,
while increasing CCA (Figure 6). On the other hand,
negative AI-LTS correlations mean that high (low) AI
appears with low (high) LTS, which has the opposite effect
on cloud properties (Figure 6). Comparing Figures 6 and 7,
the regions with negative AI-LTS correlations are coherent
with the regions with weak AI-cloud properties correlation
in Figure 6, such as the southern Pacific Ocean and off the
west coast of West Africa. This implies that the global
distribution of local aerosol-cloud relationship could be
modulated by feedback from the large-scale thermodynamic
field. The importance of the large-scale feedback on aerosol
direct and indirect effects is investigated and discussed in
the global modeling study presented by Takemura et al.
[2005].

3.3. Diurnal Cycle of Cloud Properties in Different
LTS and AI Regions

[38] As introduced in section 1, marine low clouds have
radiation-driven strong diurnal variability [e.g., Driedonks
and Duynkerke, 1989]. The TRMM sun-asynchronous orbit
allows us to examine the daytime diurnal cycle of
Re columnð Þ, CLWP, and CCA in regions with different
LTS and AI. For clarity, LTS and AI bins are assigned to be
twice as large as those in the previous sections. The LTS
and AI contours in the figures are labeled by the mean value
of each LTS and AI bin, respectively.
[39] Figure 8a shows the daytime diurnal cycle of various

cloud properties in different LTS bins. Re columnð Þ appears
to be higher in lower-LTS bins, while CCA appears to be
larger in higher-LTS bins over most of the diurnal cycle.
Re columnð Þ reaches its maximum from 10 am to 1 pm and
decreases toward evening, with consistent behavior for any
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LTS. The largest LTS regions (19.6) exhibit a slightly
different pattern in CLWP from the other regions. CLWP
stays at its maximum from 7 am to 12 pm and then rapidly
decreases in the afternoon. In particular, times of peak
CLWP in high-LTS bins (highest three bins of LTS) appear
to be in the early morning between 7 am and 9 am, while
peak times in the lowest two LTS bins are in the late
morning between 9 am and 1 pm. The diurnal cycles of
cloud top height varies with LTS, but generally decline (� a
few hundred meters) from the morning to the evening.
These patterns are similar to observations from the FIRE
intensive observation period [Hignett, 1991]. The diurnal
cycle of CCA depicts a strong contrast between daytime
diurnal variability in high- and low-LTS regions. Higher-
LTS bins tend to have larger morning/evening peaks and the
largest diurnal variability. In the highest-LTS (19.6 K)
regions, CCA declines about 50% from its peak value in
the morning. For all LTS bins, except the lowest (=11.2), the
diurnal minima appear to be at noon. Morning maxima are
slightly larger than those in the evening.
[40] Figure 8b shows the daytime cloud diurnal cycle for

different AI. Re columnð Þ and CLWP are generally higher
for lower-AI (clean) environments over most of the diurnal
cycle. Note that the sampling is unbiased with the back-
ground LTS values. Both the MODIS and GOCART rela-
tionships show distinctly different diurnal cycles between
high- and low-AI bins. In the polluted environment cases
(the highest three bins of AI), Re columnð Þ and CLWP have
sharp rises in the early morning between 7 am and 9 am in
the MODIS case, and between 7 am and 12 pm in the
GOCART case. On the other hand, the clean environmental
cases (lowest two bins of AI) show consistently high values
of Re columnð Þ and CLWP between 7 am and 1 pm. In all
the cases, Re columnð Þ and CLWP show a rapid decrease in
the late afternoon. Cloud top height gradually declines from
the morning to midafternoon, and slightly increases between
3 pm and 5 pm. The diurnal cycle of cloud top height
exhibits substantial diversity between the high- and low-AI
regions in the GOCART case, but this feature is not seen in
the MODIS case. CCA has a strong diurnal cycle, but does
not have any discernible variation with AI.
[41] While data from the TRMM satellite showed the

daytime diurnal cycle of Re columnð Þ, CLWP, and CCA, the
exact mechanism that drives different daytime diurnal

cycles is still unknown. One possible explanation could
be solar heating. As explained in section 1, absorption of
solar radiation in the middle of the cloud layer and long-
wave cooling at cloud top drive turbulent mixing in the
cloud layer [e.g., Driedonks and Duynkerke, 1989]. The
degree of solar heating may change for different droplet size
spectra. Water clouds could absorb up to 15–20% of the
incident solar radiation, with the largest values arising from
the thickest clouds with large cloud droplets [King et al.,
1990]. On the other hand, small, narrowly concentrated
cloud droplet spectra tend to have less absorption of solar
radiation. Therefore thin clouds with smaller droplet size
forming in polluted environments could reduce evaporation
due to solar heating in the morning, supporting increases the
cloud droplet size and liquid water that persist later in the
morning as compared with thicker clouds having larger
mean droplet sizes. However, this discussion is only spec-
ulative. More intensive measurements will be required to
establish the mechanisms involved.
[42] An important implication of the daytime diurnal

cycle is that satellite-based assessments of the aerosol
indirect effect could appear to be slightly different depend-
ing on the local time of satellite overpass. Unlike the
TRMM satellite, all of the polar orbiting environmental
satellites (POES) have a constant local time of satellite
overpass. Differences in Re columnð Þ and CLWP between
the highest-AI bin and the lowest-AI bin are largest in the
early morning (Figure 8b). If one measures Re columnð Þ and
CLWP early in the morning, the correlation slope between
aerosols and cloud properties could be larger than the daily
mean, whereas the correlation could be smaller around
noon. Moreover, the CCA-LTS correlation slope could
become much larger for morning/evening-time sampling,
and vice versa for noontime sampling. This daytime diurnal
cycle must be incorporated into the estimation of cloud
radiative forcing and the aerosol indirect effect estimated
from the POES.

4. Summary

[43] This study examines links between variability in
marine low cloud properties derived from the TRMM
satellite, MODIS/GOCART-derived aerosol index (AI),
and lower-tropospheric stability (LTS) derived from the

Figure 7. Linear correlation coefficient between AI and LTS in each 4� box on a global grid for the
same annual sampling period as in Figure 6. Positive AI-LTS (red) correlations mean that high AI appears
with high LTS, while negative AI-LTS correlations mean that high AI appears with low LTS, which has
opposite effect on cloud properties. Therefore negative-correlation regions appear to be coherent with the
weak-correlation regions in Figure 6.
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NCEP/NCAR reanalysis. AI and LTS are used to represent
column-integrated aerosol concentrations and background
thermodynamic environments, respectively. Results are
summarized as follows.
[44] 1. Cloud droplet sizes tend to be smallest in polluted

and strong-inversion environments. Cloud droplet size
decreases linearly with increasing LTS, while AI has even
stronger anticorrelations with cloud droplet size, especially
in clean environments. Statistical quantification shows that
twice as much variability in cloud droplet size is explained
by AI than by LTS.

[45] 2. Higher values of AI tend to be associated with
significantly lower cloud liquid water path (CLWP), while
higher LTS is linked with a slightly lower CLWP. Statistical
quantification showed that the global variability of CLWP is
more strongly correlated with AI than it is with LTS. These
results do not support the hypotheses or assumption of
constant or increased LWP of warm clouds associated with
high aerosol concentrations [Twomey et al., 1984; Albrecht,
1989].
[46] 3. High LTS, i.e., strong inversions, result in exten-

sive cloud cover and high regional albedo. LTS is linearly
correlated with the corrected cloud albedo (CCA: product of

Figure 8. Diurnal cycles of cloud properties in different (a) LTS and (b) AI regions. Contours of LTS
and AI represent the mean values of the LTS and AI bins, respectively. Error bars represent standard
errors (s/

ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p
, where n and s are the number of quasi-coincident measurements for each bin and

standard deviation, respectively).
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cloud optical depth and cloud fraction), while the AI-CCA
relationship is nonlinear and is different for the MODIS AI
and the GOCART AI cases. In clean environments, small
increases in AI can enhance CCA; however, this enhance-
ment was not observed in already polluted (high-AI) envi-
ronments. For the MODIS data set, statistical quantification
suggests that global variability in CCA is well explained by
LTS, while both AI and LTS are needed to explain local
variability of CCA.
[47] 4. Most of the local correlations between AI and

cloud properties agree with the results from the global
statistics; that is, higher AI or higher LTS is associated with
smaller cloud droplet size and lower CLWP, and higher
CCA. On the other hand, weak local aerosol-cloud correla-
tions appear in the regions where high (low) AI and low
(high) LTS occur simultaneously, thereby offsetting each
other.
[48] 5. Daytime diurnal cycles can explain additional

variability in cloud properties; none of the cloud properties
is constant through the daytime. CCA has the largest diurnal
cycle in high-LTS regions, such as off the coasts of
California, Namibia, and Chile. Cloud droplet size and
CLWP have slightly different diurnal cycles between clean
and polluted environments. Reasons for this behavior re-
main uncertain. This daytime diurnal cycle should be
incorporated into the estimation of cloud solar radiative
forcing and aerosol indirect effects produced using data
from Polar Orbiting Environmental Satellites (POES).
[49] These findings should be tested with data from

different satellite platforms and with various numerical
modeling experiments. Remaining uncertainties and pro-
posed future directions for analyses are summarized as
follows.
[50] 1. The statistical quantification may vary for a

different choice of thermodynamic (e.g., turbulent kinetic
energy or updraft velocity) and aerosol parameters (e.g.,
AOD and the Ångstrom exponent derived at different
wavelengths).
[51] 2. Our statistical sampling and analysis is limited to

warm clouds with cloud top temperatures greater than
273 K. Analyses must be extended to ice and mixed phase
clouds in future work. Such studies [e.g., Koren et al., 2005;
Lin et al., 2006] have shown different relationships for
cloud-aerosol interactions than were seen in this work.
[52] 3. Observations of the vertical distribution of AI are

required on a global scale. Kaufman et al. [2003] proposed
multisensor satellite retrievals of coarse- and fine-mode
aerosol optical depth and vertical distribution by utilizing
space-borne LIDAR measurements in addition to MODIS
radiances in the inversion. These techniques and data sets
will be available in the near future.
[53] 4. The role of GCCN is largely ignored by the use of

AI as the aerosol variable. A study examining the role of
GCCN more explicitly is possible by investigating the
relative roles of the fine- and coarse-mode aerosol fractions
available in the MODIS aerosol products.
[54] 5. The VIRS footprint size may be too coarse to

resolve the properties of highly broken clouds, leading to
unknown biases in the quantitative analysis. The TMI-VIRS
combined algorithm used in this study can be applied to the
combination of the Advanced Microwave Scanning Radi-
ometer (AMSR) and MODIS sensors on the Aqua satellite

platform. MODIS has a much smaller footprint than VIRS,
while AMSR has microwave channels similar to those of
TMI.

Notation

AI Aerosol index: the product of aerosol
optical depth and the Ångstrom exponent.

dAI95% 95% of the most frequent AI out of total
probability density function (0.41 for
MODIS; 0.26 for GOCART).

dAIbin Size of sampling bin: 10% of dAI95%
(0.04 for MODIS, 0.026 for GOCART).

LTS Lower-tropospheric stability (or inver-
sion strength): potential temperature at
700 mb – surface potential temperature.

dLTS95% 95% of the most frequent LTS out of total
probability density function (10.5 K).

dLTSbin Size of sampling LTS bin: 10% of
dLTS95% (1.05 K).

Re(column) Column integrated cloud droplet effec-
tive radius (mm).

dRe(column)95% A range of 95% of the most frequent
(
4s) Re(column) out of total probabil-
ity density function (50.0 mm).

Re columnð Þ Re(column) averaged for each bin (dAIbin
and dLTSbin).

dRe columnð Þ95% Mean change in Re columnð Þ with in-
crease in dAI95% and dLTS95%.

dRe columnð Þfreq Frequency weighted mean values of the
change in Re columnð Þ with increase in
dAIbin and dLTSbin over the globe.

CLWP Cloud liquid water path (g/m2).
dCLWP95% A range of 95% of the most frequent

(
4s) CLWP values out of total prob-
ability density function (188.0 g/m2).

CLWP CLWP averaged for each bin (dAIbin and
dLTSbin).

dCLWP95% Mean change in CLWP with increase in
dAI95% and dLTS95%.

dCLWPfreq Frequency weighted mean values of the
change in CLWP with increase in dAIbin
and dLTSbin over the globe.

CCA Corrected cloud albedo: the product of
cloud optical depth and cloud fraction in
1� box.

dCCA95% A range of 95% of the most frequent
(
4s) CCA out of total probability
density function (0.37).

CCA CCA averaged for each bin (dAIbin and
dLTSbin).

dCCA95% Mean change in CCA with increase in
dAI95% and dLTS95%.

dCCAfreq Frequency weighted mean values of the
change in CCA with increase in dAIbin
and dLTSbin over the globe.
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Krüger, O., and H. Graßl (2004), Albedo reduction by absorbing aerosols
over China, Geophys. Res. Lett. , 31 , L02108, doi:10.1029/
2003GL019111.

Lau, K. M., and H. T. Wu (2003), Warm rain processes over tropical oceans
and climate implications, Geophys. Res. Lett., 30(24), 2290, doi:10.1029/
2003GL018567.

Lin, J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow (2006), Effects of
biomass burning-derived aerosols on precipitation and clouds in the
Amazon Basin: A satellite-based empirical study, J. Geophys. Res.,
doi:10.1029/2005JD006884, in press.

Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, R. Oki, and
S. Kuroda (2002a), Physical properties of maritime low clouds as
retrieved by combined use of Tropical Rainfall Measurement Mission
Microwave Imager and Visible/Infrared Scanner: Algorithm, J. Geophys.
Res., 107(D10), 4083, doi:10.1029/2001JD000743.

Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, and K. Suzuki
(2002b), Physical properties of maritime low clouds as retrieved by
combined use of Tropical Rainfall Measuring Mission (TRMM) Micro-
wave Imager and Visible/Infrared Scanner 2. Climatology of warm
clouds and rain, J. Geophys. Res., 107(D19), 4367, doi:10.1029/
2001JD001269.

Matsui, T., H. Masunaga, R. A. Pielke Sr., and W.-K. Tao (2004a), Impact
of aerosols and atmospheric thermodynamics on cloud properties within
the climate system, Geophys. Res. Lett., 31, L06109, doi:10.1029/
2003GL019287.

Matsui, T., S. M. Kreidenweis, R. A. Pielke Sr., B. Schichtel, H. Yu,
M. Chin, D. A. Chu, and D. Niyogi (2004b), Regional comparison
and assimilation of GOCART and MODIS aerosol optical depth
across the eastern U.S., Geophys. Res. Lett., 31, L21101,
doi:10.1029/2004GL021017.

Nakajima, T., A. Higurashi, K. Kawamoto, and J. E. Penner (2001), A
possible correlation between satellite-derived cloud and aerosol micro-
physical parameters, Geophys. Res. Lett., 28, 1171–1174.

National Research Council (2005), Radiative Forcing of Climate Change:
Expanding the Concept and Addressing Uncertainties, Natl. Acad. Press,
Washington, D. C.

Park, S., and C. B. Leovy (2004), Marine low-cloud anomalies associated
with ENSO, J. Clim., 17, 3448–3469.

Penner, J. E., X. Dong, and Y. Chen (2004), Observational evidence of a
change in radiative forcing due to the indirect aerosol effect, Nature, 427,
231–234.

Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld (2001), Aero-
sols, climate, and the hydrological cycle, Science, 294, 2119–2124.

Remer, L. A., et al. (2005), The MODIS aerosol algorithm, products and
validation, J. Atmos. Sci., 62(4), 947–973.

Rosenfeld, D. (1999), TRMM observed first direct evidence of smoke
from forest fire inhibiting rainfall, Geophys. Res. Lett., 26, 3105–3108.

Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi,
D. Rosenfeld, I. Sano, and S. Mukai (2003), A study of the direct
and indirect effects of aerosols using global satellite data sets of
aerosol and cloud parameters, J. Geophys. Res., 108(D22), 4699,
doi:10.1029/2002JD003359.

Slingo, A. J. (1990), Sensitivity of the Earth’s radiation budget to changes
in low clouds, Nature, 343, 49–50.

Stephens, G. L., et al. (2002), The CloudSat mission and the A-train: A
new dimension of space-based observations of clouds and precipitation,
Bull. Am. Meteorol. Soc., 83, 1771–1790, doi:10.1175/BAMS-83-12-
1771.

Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima
(2005), Simulation of climate response to aerosol direct and indirect
effects with aerosol transport-radiation model, J. Geophys. Res., 110,
D02202, doi:10.1029/2004JD005029.

Twomey, S., M. Piepgrass, and T. L. Wolfe (1984), An assessment of
the impact of pollution on global cloud albedo, Tellus, Ser. B, 36,
356–366.

D17204 MATSUI ET AL.: VARIABILITY OF MARINE LOW CLOUDS

15 of 16

D17204



Weare, B. C. (1994), Interrelationships between cloud properties and sea
surface temperatures on seasonal and interannual time scales, J. Clim.,
7(2), 248–260.

Wood, R., C. S. Bretherton, and D. L. Hartmann (2002), Diurnal cycle of
liquid water path over the subtropical and tropical oceans, Geophys. Res.
Lett., 29(23), 2092, doi:10.1029/2002GL015371.

Yu, H., R. E. Dickinson, M. Chin, Y. J. Kaufman, B. N. Holben, I. V.
Geogdzhayev, and M. I. Mishchenko (2003), Annual cycle of global
distributions of aerosol optical depth from integration of MODIS retrie-

vals and GOCART model simulations, J. Geophys. Res., 108(D3), 4128,
doi:10.1029/2002JD002717.

�����������������������
M. Chin, Y. J. Kaufman, and W.-K. Tao, Laboratory for Atmospheres,

NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.
S. M. Kreidenweis, H. Masunaga, T. Matsui, and R. A. Pielke Sr.,

Department of Atmospheric Science, Colorado State University, Fort
Collins, CO 80523-1371, USA. (matsuit@atmos.colostate.edu)

D17204 MATSUI ET AL.: VARIABILITY OF MARINE LOW CLOUDS

16 of 16

D17204


