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Abstract. The goal of this work is to intercompare four

global land surface emissivity products over various land-

cover conditions to assess their consistency. The intercom-

pared land emissivity products were generated over a 5-

year period (2003–2007) using observations from the Ad-

vanced Microwave Scanning Radiometer – Earth Observing

System (AMSR-E), the Special Sensor Microwave Imager

(SSM/I), the Tropical Rainfall Measuring Mission (TRMM)

Microwave Imager (TMI), and WindSat. First, all products

were reprocessed in the same projection and spatial res-

olution as they were generated from sensors with various

configurations. Then, the mean value and standard devia-

tions of monthly emissivity values were calculated for each

product to assess the spatial distribution of the consisten-

cies/inconsistencies among the products across the globe.

The emissivity products were also compared to soil mois-

ture estimates and a satellite-based vegetation index to assess

their sensitivities to changes in land surface conditions.

Results show the existence of systematic differences

among the products. Also, it was noticed that emissivity val-

ues in each product have similar frequency dependency over

different land-cover types. Monthly means of emissivity val-

ues from AMSR-E in the vertical and horizontal polariza-

tions seem to be systematically lower than the rest of the

products across various land-cover conditions which may be

attributed to the 01:30/13:30 LT overpass time of the sensor

and possibly a residual skin temperature effect in the prod-

uct. The standard deviation of the analyzed products was

lowest (less than 0.01) in rain forest regions for all products

and highest at northern latitudes, above 0.04 for AMSR-E

and SSM/I and around 0.03 for WindSat. Despite differences

in absolute emissivity estimates, all products were similarly

sensitive to changes in soil moisture and vegetation. The

correlation between the emissivity polarization differences

and normalized difference vegetation index (NDVI) values

showed similar spatial distribution across the products, with

values close to the unit except over densely vegetated and

desert areas.

1 Introduction

In numerical weather prediction (NWP) models, instanta-

neous microwave land surface emissivity is an important

boundary condition that needs to be determined accurately

in order to retrieve reliable atmospheric profiles. It was sug-
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gested that a 1 % accuracy level in emissivity retrievals is re-

quired in applications such as NWP and microwave satellite-

based precipitation algorithms (Karbou et al., 2006) to ensure

the development of reliable weather products. Other applica-

tions of emissivity values include determination of changes

in land surface condition as well as understanding the vari-

ability of land emissivity, which implies relying on estimates

from different sensors and therefore the importance of inves-

tigating the consistency among the available products.

A number of microwave land emissivity products that are

associated with different sensors have been proposed in the

literature. The sensors used to infer land emissivity have

common and, in certain cases, unique frequency channels.

Relying on a single sensor’s estimates reduces the poten-

tial of the available retrievals from the other sensors. It is

therefore important to integrate all retrievals to maximize the

spectral range of land emissivity products for an effective

use, among others, in land surface classification. However,

this requires understanding the consistency among the exist-

ing products, which is the first necessary step towards inte-

grating land surface emissivity values from different sensors.

The sources of discrepancies among the existing land

emissivity products are various, and they mainly fall into one

of the two following categories. The first category includes

the sensor’s parameters. As microwave land surface emis-

sivity values are impacted by several surface and subsurface

parameters – like soil moisture, vegetation structure and den-

sity, freeze and thaw states, soil texture, and topography – a

change in one or a number of these land parameters should

impact the determined land emissivity differently depending

on the configuration of the sensor, e.g., frequency, polariza-

tion, overpass time, incident angle, and footprint. In addition,

even if two sensors concur in terms of frequency and obser-

vation geometry, a difference in their calibration process may

introduce a gap between their readings. Polar orbiting satel-

lites, which observe the earth at least twice a day, have dif-

ferent acquisition times that make their corresponding bright-

ness temperature vary.

The second category of factors which may affect the

consistency among the land emissivity products is relative

to the retrieval method and the ancillary data used, which

may introduce an inherent difference in the emissivity esti-

mates. Physical models and retrieval techniques have com-

monly been utilized to estimate land surface emissivity with

their own benefits and pitfalls. The retrieval of land emis-

sivity involves the use of land surface temperature, which

could be obtained from another sensor, like the Moderate-

resolution Imaging Spectroradiometer (MODIS) or from re-

analysis like the National Centers for Environmental Predic-

tion (NCEP) outputs. Theoretically, in emissivity retrievals

the effect of temperature is removed and one should expect

similar surface conditions from different sensors regardless

of their acquisition time, especially when they are aggre-

gated on a monthly scale. Emissivity is calculated using a

radiative transfer model traditionally for cloud-free scenes

since clouds greatly affect the signal. However, even over

cloud-free pixels, accounting for the atmospheric contribu-

tion was necessary, especially for frequencies higher than

19 GHz. Many studies have attempted to estimate emissiv-

ity using forward modeling (Ringerud et al., 2014; Bouk-

abara et al., 2011; Weng et al., 2001). These models often use

emissivity retrieval from satellite observations as a reference

in their algorithms. Physical radiative transfer models bene-

fit from including all controlling parameters in algorithms.

However, such a comprehensive approach requires several

inputs, such as soil type, moisture, and temperature, which

are difficult to obtain on large or global scales (e.g., Weng

et al., 2001; Ringerud et al., 2014). Global land emissivity

retrieval first was developed by Prigent et al. (1998) when

brightness temperatures from the Special Sensor Microwave

Imager (SSM/I) were used. Other available products later

were proposed from other sensors, such as the Advanced

Microwave Scanning Radiometer – Earth Observing Sys-

tem (AMSR-E) (Norouzi et al., 2011; Moncet et al., 2011),

the Advanced Microwave Sounding Unit (AMSU) (Karbou

et al., 2005), and the Tropical Rainfall Measuring Mission

(TRMM) Microwave Imager (TMI) (Furuzawa et al., 2012).

To retrieve land emissivity values, those studies did not nec-

essarily use the same ancillary data, radiative transfer model,

and assumptions to account for the atmospheric contribution.

Also, microwave brightness temperatures from a variety of

sensors with varying configurations (e.g., observation geom-

etry, frequency, resolution) were used to generate the global

land emissivity maps. Therefore, discrepancies among the

available land global emissivity maps are expected.

Emissivity estimates from different products were first in-

tercompared as part of a joint effort by members of the Land

Surface Working Group (LSWG) of the Global Precipita-

tion Measurement (GPM) mission, with the goal of improv-

ing retrievals from the recently launched GPM satellite (Fer-

raro et al., 2013). The emissivity estimates were compared at

three points that coincide with previous and ongoing in situ

measurements for Soil Moisture Active Passive (SMAP) and

GPM missions. The results showed noticeable differences

among estimates, with similar seasonal trends and variabil-

ity.

In another study (Tian et al., 2014), the emissivity esti-

mates from various sensors and providers at four locations

with different land-cover types: two desert and two rain for-

est locations were evaluated, and large discrepancies were

found across the sensors with different spectral signatures.

The study of Tian et al. (2014) accounted for random and sys-

tematic errors using statistical approaches and suggested that

the differences among retrievals are caused likely by cloud

or rain contaminations.

The goal of this study is to expand the point-based inter-

comparisons to a global scale and to investigate the relative

consistency among different land surface emissivity prod-

ucts. The lack of ground truth measurements on a global

scale made the validation and the benchmarking of each
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land emissivity product difficult. In this study, we propose

to overcome this lack of ground truth data by investigating

the consistency among the available global land emissivity

estimates from different sensors. The focus is on emissivity

retrievals from microwave sensors with a constant incidence

angle over a 5-year period. We assume that the consistency

among the existent land emissivity products is an indicator

of the reliability of the retrievals. The analysis of the consis-

tency among the products was conducted over different land

classes. It quantitatively compares available estimates from

different sensors. It is, to our knowledge, the first attempt to

assess the consistency among land emissivity products over

different land-cover types on a global scale. It also aims to

examine the dynamics of the products in monthly timescale

and find their relationships with surface properties such as

soil moisture and vegetation change both spatially and tem-

porally.

2 Data sets

Five years (from January 2003 to December 2007) of land

emissivity data from different providers were collected. The

sensors included in this study are AMSR-E, SSM/I, TMI, and

WindSat. The SSM/I-based emissivity product is generated

by Centre National de la Recherche Scientifique (CNRS) in

France (Prigent et al., 1998, 2006). This data set has the

longest available record of emissivity estimates for frequen-

cies of 19 to 85 GHz. The data set uses International Satellite

Cloud Climatology Project (ISCCP) skin temperature and the

NCEP reanalysis for air temperature and water vapor col-

umn.

The AMSR-E instantaneous emissivity has been pro-

duced by the National Oceanic Atmospheric Administra-

tion (NOAA) Cooperative Remote Sensing and Technology

(CREST) center for more than 6 years and is available on

a monthly scale on the National Snow and Ice Data Center

(NSIDC) website (Norouzi, 2013). This retrieval uses ancil-

lary data from ISCCP and the TIROS Operational Vertical

Sounder (TOVS) for skin temperature, cloud mask, and at-

mospheric information (Rossow and Schiffer, 1999).

The emissivity product based on TMI observations is pro-

vided by Nagoya University in monthly format (Furuzawa

et al., 2012). This product uses Japanese 25-year ReAnaly-

sis (JRA-25) as ancillary data (Onogi et al., 2007). It finds

required parameters from JRA-25 by an interpolation tech-

nique based on TMI acquisition time for each pixel.

WindSat emissivity estimates are derived using ancillary

data from Atmospheric Infrared Sounder (AIRS) and NCEP

data. Further details about the retrieval algorithms and the

product can be obtained from Turk et al. (2014).

All sensors, except TMI, are sun-synchronous and have as-

cending and descending overpasses. They are all microwave

imagers (not sounders) and have a few years of overlap in

their life span. There are some differences in frequencies, in-

cidence angle, acquisition time, footprint, and calibration of

these microwave sensors. Unlike other polar orbiting sensors

that are considered in this study, the geographic coverage

of TMI does not include areas above and below 38◦ N and

38◦ S latitude, respectively. The details of these differences

are listed in Table 1.

A vegetation and land use global data set compiled from a

large number of published sources at 1◦ equal area grid res-

olution by Matthews (1983), adopted by Prigent et al. (2001)

in 0.25◦, is used in this study to distinguish among vari-

ous surface types. The land classes include rain forest, ever-

green forest, deciduous forest, evergreen woodland, decidu-

ous woodland, cultivation, grassland, tundra, shrubland, and

desert.

3 Method

Resampling of data products: first, it was necessary to re-

process the selected land emissivity products by reproject-

ing them in a common equal-area grid (0.25◦ at the Equator)

projection and resampling them to the same spatial resolu-

tion. This step is required to make the intercomparison pos-

sible despite the systematic differences that it may introduce.

There were no further adjustments done, in terms of interfre-

quency or interangle interpolations, to account for the differ-

ences in the sensors’ configurations and observation geome-

tries. The intercomparison was performed on a global scale

except in the case of TMI, where the spatial coverage of the

sensor was limited to the ±38◦ latitude region.

The mean values of monthly emissivity products from

each sensor were calculated for the period of 2003 to 2007 to

determine the relative differences among the monthly varia-

tion of emissivity products.

Moreover, the standard deviation of monthly estimates

from each product for each pixel is calculated as indicator

of dynamics of emissivity using 5 years of monthly data.

Emissivity microwave polarization difference index

(MPDI): the intercomparison of different land emissivity

products included analysis of their sensitivity to the different

land surface parameters. To this end, a polarization index,

the emissivity microwave polarization difference index

(MPDI), was calculated. The MPDI should exhibit greater

sensitivity to surface parameters and should mitigate the

effect of the atmosphere and land surface temperature

and therefore reduce their impact on the reliability of the

products’ intercomparison. In addition, it has been shown

that differences between horizontal and vertical polarization

signals contain a wealth of information regarding soil

moisture and vegetation density (Felde, 1998). Among

the indices that accounted for the polarization difference,

the microwave polarization difference index for brightness
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temperature was largely used. The emissivity-based MPDI

is defined as

MPDI=
εv− εh

εv+ εh

, (1)

where εv and εh are emissivities at vertical and horizontal po-

larization, respectively, for a specific frequency. This index is

calculated for each pixel and then is evaluated with satellite-

based soil moisture and the normalized difference vegetation

index (NDVI).

4 Results and discussion

Monthly mean values were calculated for all products from

January 2003 to December 2007. The obtained results were

averaged over the different land-cover types, namely, rain

forest, evergreen woodland, grassland, and deserts. Fig-

ure 1 reveals clear differences among the emissivity products

which are sensitive to frequencies and land-cover conditions.

Over densely vegetated areas such as rain forests the discrep-

ancies among the products are larger at high frequencies to

reach, for instance, 0.06 between AMSR-E 89 GHz and TMI

85 GHz horizontal emissivity values. The products show bet-

ter agreement at lower frequencies which involve less scat-

tering and deeper penetration into the canopy unlike high-

frequency brightness temperature which penetrates less and

reflects the top of the canopy microwave radiating tempera-

ture. The use of the canopy skin temperature, in the rain for-

est region, to approximate the canopy effective temperature

for low and high frequencies in the emissivity retrieval can

lead to discrepancies among the products that are frequency

dependent (Norouzi et al., 2011; Prigent et al., 1999). The

effective optical depth of the canopy depends on the vegeta-

tion water content, intercepted water in rain forests, and the

vegetation structure and type. Moreover, the differences can

be attributed to the divergences among the products when

accounting for the atmospheric perturbations which are con-

siderable in the high range of frequencies due to the higher

water vapor effect in tropical and rain forest regions.

In desert, unlike rain forest regions, maximum differences

are at lower frequencies and agreements relatively improve

at higher frequencies, particularly in the horizontal polariza-

tion values. The deeper penetration of the microwave signal

especially at low frequencies in desert which leads to differ-

ences in the diurnal amplitude and phase of skin temperature

and microwave brightness temperature can introduce consid-

erable error in emissivity retrievals (Norouzi et al., 2012).

This issue is more highlighted in desert areas due to moisture

scarcity and minimal vegetation interferences. These results

are consistent with a previous study by Tian et al. (2014) in

terms of systematic differences at various frequencies. Also,

a wider gap can be noticed between the average monthly

emissivity values in the horizontal and vertical polarizations

over desert. The horizontal polarization increase with in-

creasing frequencies while the vertical polarization declines

with the frequency increase (Yubao et al., 2014). This behav-

ior was consistent among all investigated products.

According to Fig. 1, AMSR-E has the highest variation

of emissivity spectrally. AMSR-E has lower emissivities for

10, 19, and 37 GHz, and higher at 89 GHz. At 89 GHz, the

microwave signal is more affected by the atmosphere and

the impact of the differences in ancillary data and radiative

transfer modeling can be critical. It was noticed that both

horizontal and vertical polarizations reflect the same vari-

ability in terms of differences with other sensors (solid and

dashed lines). However, the differences between horizontal

and vertical polarization emissivity values increase as vege-

tation density decreases from rain forests to desert land cover.

Previous studies have shown that differences in chan-

nel frequencies and incidence angles between AMSR-E and

SSMI/I channels may lead to around 0.01 error in the emis-

sivity retrieval (Norouzi et al., 2011). TMI and SSM/I have

similar emissivity values especially at 10, 19, and 37 GHz.

The discrepancies are noticeable in 89 GHz. SSM/I and TMI

emissivities are more stable with varying frequency. The

emissivities from AMSR-E and WindSat are less consistent

than other products almost at all frequencies and land-cover

types. The results for other land-cover types are the same as

the presented ones.

The seasonality of the different land emissivity products

was analyzed. Standard deviations of monthly land emissiv-

ity estimates for 5 years of data at different frequencies were

calculated (Fig. 2). Higher variation is observed across all

products (higher standard deviation) in monthly estimates

over areas where surface properties such as moisture and

vegetation change more significantly over the seasons due to

the presence/melting of snow during winter/summer, vegeta-

tion growth, and seasonal precipitation. Figure 2 depicts the

calculated standard deviations of monthly emissivity means

at 37 GHz (horizontal polarization) for all sensors. SSM/I

and AMSR-E emissivity values show high standard devia-

tions greater than 4 % (dark red) in high-latitude and boreal

regions, which do not seem to be present in the WindSat val-

ues in the horizontal polarization. The highest standard vari-

ation for WindSat at northern latitudes was less than 0.03.

Das et al. (2014) reported a higher disagreement between

AMSR-E and WindSat brightness temperatures in Dom-C

area in Antarctica in horizontal polarization. The relatively

high standard deviation values across all sensors could be

explained by the transition between freeze and thaw condi-

tions throughout the seasons. However, one should expect

consistency between AMSR-E and WindSat because of their

similar configurations. In line with what was stated in Das et

al. (2014), the difference in incident angles (49.9◦ for Wind-

Sat and 55◦ for AMSR-E) seems to have a considerable im-

pact on the northern latitude retrieval, affecting more the hor-

izontal polarization observation than the vertical polarization

ones. Moreover, the snow-covered regions are also flagged

Atmos. Meas. Tech., 8, 1197–1205, 2015 www.atmos-meas-tech.net/8/1197/2015/
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Table 1. List of global land surface emissivity products used in this study.

Sensor Provider Frequencies Incidence angle Ancillary data

AMSR-E NOAA-CREST 6.9, 10.65, 18.7, 23.8, 36.5, and 89.0 550 ISCCP-DX, TOVS

SSM/I CNRS-France 19.35, 22.235(v), 37.0, and 85.5 530 ISCCP-DX, NCEP Reanalysis

TMI Nagoya Uni. 10.65, 19.35, 21.3(v), 37.0, and 85.5 53.40 JRA-25

WindSat JPL/NRL 6.8, 10.7, 18.7, 23.8, and 37.0 49.90 to 55.30 NCEP Reanalysis, AIRS

Figure 1. Mean of monthly emissivity values (from 2003 to 2007) for rain forest, evergreen woodland, grassland, and desert regions on

a global scale from AMSR-E, TMI, SSM/I, and WindSat. The solid lines present vertical polarization, and dashed lines are for horizontal

polarization.

in the retrieval of WindSat emissivities which caused lower

variability in the Northern Hemisphere (Turk et al., 2014).

Other land-cover signatures are also seen in monthly stan-

dard deviations. For instance, WindSat clearly shows a low

emissivity standard deviation (less than 0.005 %) over the

Amazon and Congo with persistent and steady dense veg-

etation. The Sahara is clearly distinguishable from SSM/I

emissivity values when low emissivity values contrast with

the transition region (south of the Sahara) with higher emis-

sivity variation because of seasonal variation of moisture and

vegetation cover. Surface properties in terms of soil moisture

do not change in the Sahara with almost no vegetation cover.

This can explain the low emissivity change and standard de-

viation. AMSR-E and TMI also show the same pattern, but

it is less recognizable in the WindSat map. There are small

regions that show a very high standard deviation in South

America, corresponding to floodplains that are seasonally in-

undated, which explains the high standard deviation values

in all products except WindSat. Moreover, the standard de-

viation of the TMI emissivity values in the Amazon seems

to be higher (around 0.01–0.015) than the values obtained

with the other sensors (around 0.005–0.01). In WindSat, ow-

ing to the simplified parameterizations of the vegetation in

the retrieval, the variability of emissivity is not very high in

transition areas (Turk et al., 2014). Similar results of standard

variation analysis also were found in other channels that are

not presented here. Overall, despite the relative differences in

standard deviation values, the dynamics of emissivity prod-

ucts tend to be related to known changes in surface condition

across the globe.

The relationship between the investigated products and

two key surface parameters, namely, soil moisture and vege-

tation cover, was assessed. The emissivity MPDI values are

plotted against soil moisture content and NDVI values over

the TMI coverage region for all products (Fig. 3). Soil mois-

ture estimates are microwave-based from WindSat C-band

observations because of its availability over the time period

of this study (Turk et al., 2014). NDVI estimates are from

MODIS and are available every 16 days globally. Monthly

averages of NDVI and soil moisture estimates are calculated

in this study. Emissivity-based MPDI values for the range of

soil moisture and NDVI values at 19 GHz are shown in Fig. 3

www.atmos-meas-tech.net/8/1197/2015/ Atmos. Meas. Tech., 8, 1197–1205, 2015
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Figure 2. Monthly standard deviation of emissivity estimates from

AMSR-E, SSM/I, WindSat, and TMI from 2003 to 2007 at 37 GHz

(horizontal polarization).

for all products for July 2003. High emissivity-based MPDI

values greater than 0.06 are found for low soil moisture and

low NDVI values in all products. This is in line with previ-

ous studies that suggest that the contrast between horizon-

tal and vertical microwave signals is higher in desert regions

with almost no vegetation (e.g., Norouzi et al., 2011; Prigent

et al., 2006). Soil moisture has been found to decrease the

emissivity across the frequencies (Basist et al., 1998). Lower

emissivity-based MPDI values are seen as vegetation density

and soil moisture increase in all products. Higher vegetation

Figure 3. Emissivity MPDI values from various sensors/providers

at different NDVI and soil moisture ranges at 19 GHz for July 2003.

causes more scattering of microwave signal, and therefore

the difference between horizontal and vertical polarizations

decreases. The pattern is very similar for all products ex-

cept WindSat, which shows lower values (about 0.05) in the

low soil moisture range. This could be because the soil mois-

ture data are based on WindSat observations. Consequently,

one can conclude that emissivity retrievals are consistent in

terms of their relationship between emissivity-based MPDI

and surface condition.

The comparison of emissivity and NDVI as indicators of

vegetation density and surface condition revealed that the dif-

ferences between horizontal and vertical emissivity values

(eH− eV) have positive correlation with vegetation and soil

moisture values (Norouzi et al., 2011; Prigent et al., 2006)

using AMSR-E and SSM/I values. Monthly temporal cor-

relation between eH− eV and NDVI values were calculated

for 5 years globally for each pixel. The calculated correla-

tion values for all products at 19 GHz are shown in Fig. 4.

At first glance, all products present a high correlation (more

than 0.9) with monthly NDVI variations in most regions. This

shows that emissivity estimates in these regions are in phase

with what is expected from the surface in terms of vegeta-

tion. However, desert regions in the Sahara, Australia, and

the Middle East as well as regions with very high vegetation

density show a much lower correlation (around −0.2 to 0).

This is because in desert regions there is almost no vegetation

and the surface vegetation and soil moisture do not change.

Besides, in highly vegetated areas such as the Amazon and

Congo, the vegetation density remains high throughout the

year. Therefore, the NDVI and eH−eV variation comparisons

are not representative of the surface condition variation in

highly vegetated and desert areas. The observed variability

could be because of noises or atmospheric residuals in the

emissivity retrievals. WindSat has a different spatial pattern,

especially in the semi-arid region that marks the transition

zone between desert and rain forest regions in Africa.

Atmos. Meas. Tech., 8, 1197–1205, 2015 www.atmos-meas-tech.net/8/1197/2015/



H. Norouzi et al.: Assessment of the consistency of emissivity products 1203

One key factor in emissivity retrievals is the cloud mask in-

formation that is utilized to mask out the cloudy scenes and to

ensure that the retrieval of emissivity is only performed over

cloud-free pixels. The investigated data products do not nec-

essarily use the same cloud mask. The inconsistency among

the detected cloudy pixels in the analyzed products could be

an additional source of discrepancy, which can also explain

the differences in the mean monthly maps. The differences

between emissivities could be up to 10 % at higher frequen-

cies with false detection of cloudy scenes.

NWP models rely on radiative transfer (RT) models (e.g.,

Community Radiative Transfer Model (CRTM)) that are

used to determine the state of the atmosphere and account

for the radiative transfer in different spectral ranges, such

as, among others, the microwave frequencies (window and

sounding channels). Estimates of land surface emissivity are

particularly important as NWP models attempt to assimi-

late passive microwave observations over land (Prigent et

al., 2006). Specifically, when it comes to window channels,

the surface radiance that is controlled by the land emissivity

should be determined. The simulations using the RT models

should be carried across a wide range of angles and frequen-

cies. Sensors can only provide estimates at specific angles

and frequencies.

The results of this study can serve the development of a

global blended land emissivity product that accounts for the

identified spatial inconsistencies among the different exist-

ing land emissivity products. A blended product may bal-

ance the errors among the distinct products as such prod-

uct could be obtained using a weighted regression among all

emissivity retrievals where weights should vary spatially to

account for the spatial variability of the consistency among

the products (Sahoo et al., 2011). Given the instantaneous

scale of NWP models, the assimilation of such blended prod-

uct may not be possible. However, such a product could be

useful if it considered with an error estimate that accounts

for the instantaneous bias. Using forward operators in assim-

ilation models, some instantaneous biases may be removed

by additional observations such as infrared sounders and ra-

diosondes measurements. This should lead to weather fore-

casts that are more accurate than obtained when any individ-

ual land emissivity product is used. The emissivity blended

composite could also satisfy the needs of many precipitation

retrieval algorithms (Skofronick-Jackson et al., 2013). More-

over, land emissivity is sensitive to soil wetness, which can

affect brightness temperatures when they are used in NWP

models. The perturbations in emissivity due to the soil mois-

ture effect may propagate significant error in atmospheric in-

formation estimates from when they are not accounted for.

This could be particularly important since the sensors have

different acquisition times which may reflect some variability

in their estimates of soil moisture (especially AMSR-E with

01:30/13:30 crossing times) (Jackson et al., 1997). This vari-

ability may have imposed some discrepancies among sen-

sors, although they are aggregated to a monthly scale. A cross

Figure 4. Correlation maps between temporal variations of eH−eV

from all sensors at 19 GHz with monthly NDVI values from 2003

to 2007.

calibration that involves data from all the sensors used in

this study is necessary to detect the magnitude of the dis-

crepancies in the raw data and the determined brightness

temperatures and to apply appropriate corrections to miti-

gate its impact on land emissivity retrievals. The efforts part

of the Global Precipitation Measurement mission showed

small differences between similar channels (but not identi-
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cal) of conical orbiting radiometers on two pairs of sensors,

TMI/WindSat and TMI/AMSR-E. However, in some other

channels, such as 37V, the differences between TMI and

WindSat could reach 3 K (Wilheit, 2013), which can have

a non-negligible influence on emissivity estimates. This dif-

ference causes about 0.01 difference in emissivity estimates,

which is significant especially in regions where emissivity

values are higher than 0.95 (Norouzi et al., 2012).

5 Conclusions

The global emissivity retrieval products from various pas-

sive microwave sensors over land were intercompared on

a monthly scale for a 5-year period of time. The sensors

have a general configuration difference that can induce some

systematic differences among them. Previous studies have

shown that differences due to channel frequency and inci-

dence angle are not significant especially at lower frequen-

cies. Systematic differences among retrievals could be due

to ancillary data and the radiative transfer models used. All

products use a relatively similar retrieval algorithm to esti-

mate emissivity on top of the canopy or the land surface.

However, the differences in ancillary data and the ways they

may be interpolated or resampled prior to their use in the

retrieval may affect the obtained emissivity values. In addi-

tion, the differences among the methods to account for atmo-

spheric contributions are among the sources of differences.

Emissivity values are the signals from microwave obser-

vation after removing the effect of temperature and atmo-

sphere from the brightness temperature. The differences at

lower frequencies were found to be higher in desert regions

because of penetration depth and discrepancies between skin

temperature and microwave brightness temperature originat-

ing depths. At higher frequencies (more than 37 GHz) due

to atmospheric residuals in emissivity values, the inconsis-

tencies increase in regions with high vegetation density and

water vapor amount. Systematic uncertainties are similar be-

tween horizontal and vertical polarizations. The emissivity

values from SSM/I and TMI were found to be more consis-

tent over different land-cover types. The maximum system-

atic difference among emissivities was found to be about 4 %

at all frequencies and polarizations. This could be an indi-

cator of uncertainty level from emissivity retrievals despite

10 % error in physical model-based emissivities (Ringerud et

al., 2014).

The seasonal variation of emissivities was evaluated by

looking at monthly standard deviation values, and they were

found to be consistent with what is expected qualitatively

from the surface in most regions except the Amazon and

South America. Moreover, the dynamics of the emissivity es-

timates compared to surface properties such as soil moisture

and vegetation were found to be more promising than the ab-

solute value estimates.

Results of this study highlight the need for a more thor-

ough review of emissivity values before using them in phys-

ical models or precipitation measurement algorithms. Daily

or instantaneous emissivity estimates from different sources

may also yield more information about systematic and ran-

dom uncertainties from retrievals. For more in-depth error

analysis and to find the sources of discrepancies, an analysis

can be done by applying the same inputs for different algo-

rithms that were used for all four sensors. Moreover, modifi-

cations could be applied to each retrieval method to account

for instantaneous biases that could be estimated with respect

to a blended composite emissivity product.
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