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ABSTRACT

Properties of the rain estimation differences between Tropical Rainfall Measuring Mission (TRMM)

Precipitation Radar (PR) 2A25, TRMM Microwave Imager (TMI) 2A12, and TRMM Multisatellite Pre-

cipitation Analysis (TMPA) 3B42 are investigated with a focus on distinguishing between nonextreme and

extreme rains over the Maritime Continent from 1998 to 2014. Statistical analyses of collocated TMI 1B11

85-GHz polarization-corrected brightness temperatures, PR 2A23 storm-top heights, and PR 2A25 vertical

rain profiles are conducted to identify possible sources of the differences. The results indicate that a large

estimation difference exists between PR and TMI for the general rain rate (extreme and nonextreme events).

The PR–TMI rain-rate differences are larger over land and coast than over ocean. When extreme rain is

isolated, a higher frequency of occurrence is identified by PR over ocean, followed by TMI and TMPA. Over

land, TMI yields higher rain frequencies than PR with an intermediate range of rain rates (between 15 and

25mmh21), but it gives way to PR for the highest extremes. The turnover at the highest rain rates arises

because the heaviest rain depicted by PR does not necessarily accompany the strongest ice-scattering signals,

which TMI relies on for estimating precipitation over land and coast.

1. Introduction

The Maritime Continent (MC), as introduced by

Ramage (1968), defines an archipelagic area over the

tropics and is primarily characterized as one of the

highest precipitation areas on Earth. The MC covers a

wide area that surrounds Southeast Asian countries

between the IndianOcean and the Pacific Ocean, that is,

peninsular Malaysia, Singapore, Indonesia, Brunei,

Timor, and New Guinea (Qian 2008). Considerable

amounts of precipitation occur over theMCbecause of a

combination of complicated environmental factors. One

of the most influential components is the existence of

warm surface water in the western Pacific Ocean and the

eastern Indian Ocean, which are labeled as ‘‘warm

pools’’ (Ramage 1968). High evaporation rates over

these warm pools provide a large moisture supply

around the MC, which subsequently becomes a source

of precipitation over the area. However, despite the

large moisture supply, precipitation over the MC would

be less without an enhancement effect from the South-

east Asian monsoon, which is known as one of the most

predominant monsoons in the world (Kripalani and

Kulkarni 1997). This monsoon transports moisture from

the surrounding ocean directly toward the center of the

MC. From December to February, the westerly mon-

soonal wind dominates and carries abundant moisture

from the Indian Ocean, whereas in June through Au-

gust, the moisture is primarily transported from the

Pacific Ocean (Aldrian and Dwi Susanto 2003; Chang

et al. 2005). Large amounts of precipitation frequently

occur when large volumes of moisture carried by the

monsoon reach close to the islands, transported farther

to the land particularly during late afternoon and
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condensed because of a lifting process as a result of

the island’s mountainous landform (Mori et al. 2004;

Ichikawa and Yasunari 2006). Although there are sig-

nificant variations caused by the local topography, the

resulting processes generally yield high precipitation

concentrations in the central part of the land (Qian

2008).

The environmental characteristics specific to the MC

are responsible not only for the high annual pre-

cipitation, which is approximately 1500–3000mmyr21

over land (As-Syakur et al. 2013), but also for the high

frequency of extreme precipitation that can trigger

hazards over the MC. An analysis of 11-yr records of

global flood frequency in 1998–2008 conducted by

Adhikari et al. (2010) shows that Indonesia (which

constitutes the largest part of the MC) is listed as one of

the top 10 countries for the number of flood events.

Several studies have aimed to characterize the envi-

ronmental factors accompanying the extreme events,

and these studies indicated that there are various intra-

annual and interannual factors involved. For example,

an analysis of extreme events over peninsular Malaysia

and northern Borneo conducted by Salahuddin and

Curtis (2011) from 1998 to 2007 revealed that the com-

bination of the South China Sea circulation and the

Madden–Julian oscillation (MJO) is a factor that gen-

erates the extreme events. The MJO influence was also

identified by Tangang et al. (2008) in peninsular Ma-

laysia during flood events in December 2006 to January

2007, where an active phase of the Indian Ocean dipole

was also viewed as another factor responsible for the

extremes. However, because of a lack of observations,

the general mechanism for the extreme precipitation

dynamics over the MC is still not fully understood.

Substantial amounts of precipitation data over the

global tropics have been collected through the Tropical

Rainfall Measuring Mission (TRMM). The long-term

data series (from the end of 1997 to 2014) from the

TRMM have enabled the detection of numerous rare

events related to precipitation, particularly extreme

rainfall. Information regarding various key aspects re-

lated to extreme events might be retrieved from rainfall

estimates derived from TRMM, particularly from

TRMM Precipitation Radar (PR) as an active sensor

and TRMM Microwave Imager (TMI) as a passive mi-

crowave sensor. PR is the first spaceborne precipitation

radar with a 13.8-GHz frequency band with vertical

profiling ability in measuring precipitation (Iguchi et al.

2000). Conversely, TMI estimates precipitation based

on microwave emissions and ice-scattering signals from

precipitating clouds and provides vertical hydrometeor

profiles (Kummerow and Giglio 1994; Kummerow

et al. 1996).

Because of the different nature of the active and

passive sensors in the TRMM, different rain-rate esti-

mations exist among the TRMM-derived rainfall prod-

ucts. Various studies have been conducted to identify

the differences in TRMM-derived rainfall products on a

global scale by directly comparing the precipitation es-

timates (Berg et al. 2006; Kumar et al. 2009; Gopalan

et al. 2010) or by identifying the factors underlying the

differences, for example, based on precipitation water

path and precipitation water column (Masunaga et al.

2002). Several studies have highlighted the fundamental

causes for the differences. One of the currently known

sources of biases comes from the TMI ice-scattering

signals. For example, an investigation by Rajendran and

Nakazawa (2005) revealed that higher ice-scattering

signals are acquired by TMI at mature-to-decaying

stages of convection, where the storm-top height is

maximum with abundant ice particles. However, these

types of events may have low near-surface rain because

of a time lag between the processes occurring at the

cloud top and the surface (Furuzawa and Nakamura

2005). A comparison study with ground radar data

conducted by Zagrodnik and Jiang (2013) showed that

TMI has a significant overestimation with respect to ice

particles. Very high rain rates are often estimated by

TMI at low brightness temperatures, particularly below

220K, while PR shows a less significant relationship

between rain-rate and ice-scattering signals.

In addition to the global comparison, a large number

of regional comparison and validation studies have been

conducted to analyze the differences, for example, by

examining with other satellite products, ground radar,

and rain gauge data (Fu and Liu 2003; Prakash et al.

2012). The above studies indicate significant improve-

ments for the most recent TRMM algorithms, and the

global rain estimations by PR and TMI show a better

agreement, although the regional-scale differences re-

main large. It has also been suggested that the different

estimations emerge because of regional variations of

climate characteristics affecting precipitation-related

processes (Berg et al. 2006).

The MC’s regional characteristics are often described

as an area with intense deep convections (Qian 2008).

The deep convections are known to have tall cloud

structures, with low temperatures at the top and large

precipitation amounts at the bottom. Theoretically, the

stronger and taller the deep convective structures, the

more rain it will produce. However, recently, Hamada

et al. (2015) showed that the heaviest rain near the

surface is often produced by a system with a relatively

low storm height. Using the TRMMPR reflectivity data,

they showed that the heaviest rain events occur at a

lower PR echo height below the uppermost limit of the
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highest echo height. A more favorable environmental

condition at the lower troposphere, where humidity is

higher, is suggested as the main reason for the growth of

rain drops through collision and coalescence processes.

An important implication of their study is that the re-

lation between the cloud microphysics of ice particles

aloft and surface rainfall depends systematically on the

environmental conditions. This may introduce a poten-

tial bias in rainfall estimates between the PR and TMI

products, particularly over land.

Although a number of studies have used TRMM data

to measure precipitation over the study area, particularly

related to the variation of diurnal cycles (Mori et al. 2004;

Ichikawa and Yasunari 2006), very few studies have ad-

dressed issues related to data comparison and validation

with a focus on the MC (As-Syakur et al. 2013), partic-

ularly in light of extreme rain events. To this end, this

paper presents a comparative analysis of the TRMM-

derived precipitation products over the MC, with a focus

on extreme rainfall. An outline of the data and methods

used in this research are presented in section 2. The sta-

tistical comparison results are presented in section 3.

These results are discussed further in section 4. A com-

parison with a focus on the extreme cases is provided in

section 5, and the discussion and conclusions related to

the main properties of rain-rate estimation differences

between each product are presented in section 6.

2. Data and methods

a. Dataset

There are several precipitation estimates from the

TRMM, which are primarily derived from PR and TMI.

An estimate from combined passive microwave and IR

data obtained from the TRMM and other satellites,

defined as TRMM Multisatellite Precipitation Analysis

(TMPA), is also available (Huffman et al. 2007). This

product is based on observations with a finer temporal

resolution and global spatial coverage, and thus it en-

hances the individual measurement capability limited by

sporadic overpasses and a finite swath width of hundreds

of kilometers. This work focuses on the rain-rate esti-

mation differences among three TRMM-derived pre-

cipitation data, namely, PR 2A25 (NASA 2011a), TMI

2A12 (NASA 2011b), and TMPA 3B42 (NASA 2011c).

The three precipitation datasets from the TRMM tem-

poral data records of 1998–2014 are examined. Slight

changes in the original spatial resolution and swath

widths due to an orbit boost in 2001 are considered to be

negligible for the present purposes. Only the most re-

cent version of the TRMM products (version 7) is used

in this study. The study area is bounded between 158N
and 158S and between 908 and 1508E, as shown in Fig. 1.

PR 2A25, a TRMM level 2 product, produces in-

stantaneous three-dimensional rainfall structures at

4.3-km (5km) horizontal resolution and 250-m vertical

level within the total swath width of 215 km (247km)

during preboost (postboost) (Iguchi et al. 2000). The

vertical profiling ability from PR is augmented with a

combination of the Hitschfeld–Bordan method and the

surface reference technique (SRT) for estimating the drop

size distribution based on radar reflectivity and path-

integrated attenuation (PIA) (Iguchi andMeneghini 1994;

Seto and Iguchi 2007). The Hitschfeld–Bordan method

produces the best estimate at light rain rates, but it fails for

high rain rates. Furthermore, this method often generates

higher PIA as an effect of the cumulative error from its

vertical profiling. In contrast, SRT can produce better

results for heavy rain, but it has no vertical information.

The combination is achieved by adjusting the PIA from

the Hitschfeld–Bordan method with the SRT to obtain

optimal estimates.

TMI 2A12, which is also a level 2 product, provides

estimations of surface rainfall based on passive

FIG. 1. Map of the study area with classified surface types based on the TMI 2A12 surface flag. Dark shaded colors

represent higher mean rain rates from the PR 2A25 near-surface rain averaged from 1998 to 2014.
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microwave radiometry. The 2A12 product measures in-

stantaneous rain rates based on a given set of brightness

temperature inputs from the emission bands (10, 19, 21, and

37GHz) and 85-GHz ice-scattering bands (Kummerow

et al. 1998). The TMI finest horizontal resolution is ap-

proximately 5km 3 12km, which is larger than PR. The

TMI swath is nearly 3 times as wide as the PR swath (ap-

proximately 878km after orbit boost in August 2001).

There are different streams in the TMI algorithm for esti-

mating surface rainfall depending on the surface types of

ocean, land, and coast. Over ocean, the algorithm utilizes

all the nine channels, including the emission and ice-

scattering channels to retrieve rain rates. In contrast to

the ocean algorithm, the land and coast algorithms are only

able to estimate rain rates based on the 85-GHz ice-

scattering channel to avoid the large uncertainty in the

microwave surface emissivity (Kummerow et al. 2001).

Therefore, it is challenging to accurately estimate rain rates

over land and coast, which is a major weakness of TMI.

TMPA 3B42 is one of the level 3 TRMM products,

which produces adjusted merged passive microwave–

infrared (IR) precipitation at the global scale with

0.258 3 0.258 spatial resolution and 3-hourly temporal

resolution (Huffman et al. 2007). The global coverage

(up to 508S–508N) and a fine temporal resolution are

achieved by combining input from several data pro-

viders, namely, 1) level 1 TRMM TMI brightness tem-

perature (2A12), 2) level 2 PR–TMI combined rainfall

profile (2B31), 3) NSIDC level 2 AMSR-E precipitation

estimate, 4) NOAA/NCDC M-CLASS SSMIS bright-

ness temperature, 5) NOAA/NCDC CLASS SSMIS

antenna temperature, 6) NESDIS Microwave Surface

and Precipitation Products System (MSPPS) level 2

AMSU-B precipitation estimate, 7) NESDIS MSPPS

operational level 2 Microwave Humidity Sounder

(MHS) precipitation estimate, 8) NOAA/NCDC level 3

Gridded Satellite (GridSat-B1) IR brightness tempera-

ture, and 9) NOAA/NWS/CPC merged 4-km geosta-

tionary satellite IR brightness temperature (Huffman

and Bolvin 2013). The 3B42 final product is later ob-

tained by further calibrating the data with GPCC level 3

precipitation gauge analysis on a monthly basis to gen-

erate more accurate estimates than the near-real-time

product, and it is released approximately two months

later.

The minimum rain rate differs among the products.

The minimum PR echo detectability is approximately

17 dBZ (Iguchi et al. 2000), close to 0.5mmh21. The

latest version of the TMI algorithm (version 7) removes

the screening process over ocean and provides rain

probability parameters, with a minimum detectability of

0.4mmh21 (Zagrodnik and Jiang 2013). Although no

specific detectability threshold is given for TMPA, it is

considered to be a less reliable method for determining

light rain fields. Low IR cloud temperatures, but no

surface rain, can be mistaken as rain fields by TMPA,

particularly because of the existence of ice particles

from cirrus clouds or decaying precipitation systems

(Rosenfeld 2007).

b. Data preprocessing

Because of differences in area coverage and spatial and

temporal resolutions among the three products, a direct

comparison among these data is impossible in the original

format of each dataset; therefore, a data preprocessing

routine is required. In this research, we consider the data

only in which a PR swath exists, neglecting the TMI and

TMPA data falling outside the PR field of view because

the PR swath is narrowest. The omission of any mea-

surements outside the PR swath leads to a bias in eval-

uating the range of sensors contributing to the TMPA

because its design does not usually allow non-TRMM

satellites in the zone that the PR covers. As such, the

present strategy is somewhat of limited utility for evalu-

ating the TMPA rainfall. A more thorough assessment of

TMPA would require the whole TMPA fields to be an-

alyzed at the expense of the loss of sampling consistency

with PR and TMI overpasses. Such an extensive analysis

is outside the scope of the present study.

Since the spatial resolution is approximately 5 km 3
5 km for PR, 5 km3 12km for TMI, and 0.258 3 0.258 for
TMPA (approximately 28 km 3 28 km in the study

area), a spatial averaging technique is implemented. We

average a set of pixels from PR and TMI data located

within each TMPA grid to match the TMPA since it has

the coarsest resolution. The different temporal resolu-

tions between instantaneous rain rates from PR and

TMI and 3-h rain rates fromTMPA could also produce a

temporal mismatch in the analysis. To mitigate the

mismatch, the time records of PR and TMI overpasses

closest to the 3-hourly time stamp of TMPA are selected

and stacked together into a single time bin. Thus, the

comparison between the three data is calculated for

each 3-h time bin, which contains a single overpass for

each of the three products. The maximum temporal

difference allowed between TMPA and the two prod-

ucts in each calculated bin falls within a range from21.5

to 1.5 h. This time range is considered to reasonably

capture extreme rain events in the study area where

extreme events often occur in a duration of approxi-

mately about 5 h for rain rates higher than 15mmh21

(approximately equal to the uppermost 1% PR thresh-

old) (Liu et al. 2015).

In addition to the spatial and temporal differences,

there is also a difference in how each pixel is categorized

as rain or nonrain from PR and TMI. In general, there
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are three main groups of nonrain/rain flag classifications

from PR, consisting of no-rain, rain-possible, and rain-

certain fields (TRMM PR Team 2011). A pixel is clas-

sified as rain in PR when its echo exceeds a certain

threshold. Furthermore, when the echo is weak but

higher than the threshold or when it is possibly influ-

enced by clutter contamination, it is labeled as a rain-

possible field. Since the minimum rain-rate detectability

is approximately 0.5mmh21 (;17dBZ) from PR and

considerably less for TMI, we set this value as the

threshold for determining no-rain/rain fields. Thus, only

grids with a rain rate higher than 0.5mmh21 are con-

sidered as raining.

This study treats ocean, land, and coast separately

since different surface types potentially becomes a

source of error in the estimation. This separation is

intended to address the different modes of the TMI al-

gorithm depending on the surface types, especially be-

cause of the limitation of the land algorithm in using

emission channels. The surface type classification is

assigned for each grid from the matched-up dataset

based on the TMI 2A12 surface flag. However, since the

spatial resolution of the matched-up dataset is different

from the original TMI spatial resolution, the grid surface

types are determined based on the dominant TMI sur-

face type with each grid box. If more than two-thirds of a

grid box is filled with TMI land pixels, then that grid box

is classified as land surface and vice versa for ocean. A

grid box that is identified as neither land or ocean is

defined as coast.

c. Statistical intercomparison

The preprocessing routine described in the previous

section generates a combined dataset that consists of

PR, TMI, and TMPA rain estimates with a 0.258 3 0.258
spatial resolution and 3-hourly temporal resolution.

First, the three datasets are compared in terms of the

domain-mean climatology over a range from very light

rain to the heaviest rain. We focus on the relative dif-

ferences among the products, and no ground-based ob-

servation data are utilized for the validation.

The mean rain rate is computed in two different

manners: conditional and unconditional rain rates. The

conditional means are calculated with raining grid boxes

only (grid with rain rate . 0.5mmh21), while the un-

conditional means represent the average of all grid

boxes irrespective of raining or nonraining. The mean

values are obtained separately for different surface

types of ocean, land, and coast–mixed surfaces. We also

study the potential difference in moderately or ex-

tremely heavy rainfall using several rain-rate thresholds.

Eight thresholds of 0.5, 1, 5, 10, 15, 20, 30, and 40mmh21

are examined, below which all rain rates are excluded.

Second, differences in the rain-rate estimation is

assessed in further detail between each pair among the

three products, that is, PR–TMI, PR–TMPA, and TMI–

TMPA. Absolute nonrain events, in which both of the

values are equal to #0.5mmh21, are excluded from the

analysis. The dissimilarities between the first and second

data from each pair are computed to identify a positive

or negative difference value. This positive (negative)

difference value implies that a higher (lower) rain-rate

estimation exists from the first data to the second data

in a pair based on the following function:

D5
1

n
�
i

(R
x,i
2R

y,i
), (1)

whereD is the difference values, n is the total number of

data, Rx,i and Ry,i are the first and second data in each

pair, and i denotes the individual data samples.

A few additional analyses of the difference values are

conducted to account for the fact that rain screening is

not homogeneous across the three products. Following

Habib et al. (2009) and Zagrodnik and Jiang (2013), we

calculate the hit signal difference (HD), miss signal

difference (MD), and false signal difference (FD). The

HD is calculated when both the first and the second data

in a pair contain a finite rain rate within the same grid

box:

HD5
1

n
�
i

(R
x,i,H

2R
y,i,H

), (2)

whereHD is the hit signal difference, andRx,i,H andRy,i,H

are the first and second rain data samples forRx,i. 0 and

Ry,i. 0. TheMD is calculatedwith the sampleswhere the

first data misses the rain events detected by the second

data in a pair:

MD5
1

n
�
i

R
y,i,T

, (3)

where MD is the miss signal difference, and Ry,i,T is the

second data samples for Rx,i . 0 and Ry,i . 0. The FD is

defined as the inverse to the MD:

FD5
1

n
�
i

R
x,i,T

, (4)

where FD is the false signal difference, and Rx,i,T is the

first data samples for Rx,i . 0 and Ry,i . 0.

Subsetting each data pair only for the HD component,

the conditional root-mean-square difference (RMSD) is

calculated and decomposed into its systematic and ran-

dom differences (Habib et al. 2009; Zagrodnik and Jiang

2013):
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RMSD5RMSD
s
1RMSD

r
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
i

(R
x,i
2R

y,i
)2

s
,

(5)

where RSMDs is systematic difference, RSMDr is ran-

dom difference, and n is total number of the data in a

pair with rain rate. 0.5mmh21. The systematic error is

extracted by linear regression as

RMSD
s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
i

(R0
x,i 2R

y,i
)2

s
, (6)

where R0
x,i 5 a1 b3Ry,i and a and b are the regression

constants.

Finally, the exceedance probability distribution is

utilized to assess the interproduct differences in extreme

rainfall. The exceedance values represent the occur-

rence probability at or above a certain rain rate, fol-

lowing the formula

P5m/(n1 1), (7)

whereP is the exceedance probability,m is the data rank

ordered from the highest rain rate to the prescribed

threshold of rain rate, and n is the total number of

each data.

d. Extreme rainfall analysis

In this study, extreme rainfall is examined in terms of

passive microwave ice-scattering signals, radar storm-

top heights, and vertical rain profiles. Those parameters

are useful to characterize clouds with extreme pre-

cipitation, particularly for the case of deep convections.

A strong deep convective cloud, expected to be heavily

precipitating, generally contains a large amount of ice

particles. The microwave scattering due to such ice

particles would not only produce a striking decrease in

the measured TMI 85-GHz brightness temperature but

result in a notable PR echo-top height. In this study, the

85-GHz brightness temperature data from TMI 1B11

(NASA 2011d), storm-top height data from PR 2A23

(NASA 2011e), and vertical rain profile data from PR

2A25 are utilized. All of the data are gridded as pre-

viously described.

There are various methods for categorizing nonextreme

and extreme rain events. For example, Salahuddin and

Curtis (2011) categorized extreme events based on fixed

thresholds of 10, 20, and 40mm for the entire study area.

Hamada et al. (2015) defined the uppermost 0.1% data

distribution at each 2.58 3 2.58 as extreme events. Fur-

thermore, because of large variations accompanying dif-

ferent classification methods, Kiktev et al. (2003) used

multiple classification methods to define the extremes,

such as fixed thresholds, regional uppermost values, and

annual maximum values. In this work, extreme rain events

are defined as the uppermost 1% from the data over the

entire region. It is assumed that regional variations of ex-

treme rainfall are relatively small because of the uniform

climate characteristics of the study area.

Ice-scattering signals in the TMI 85-GHz brightness

temperature are a proxy of heavy convective rainfall

over all three surfaces, although such signals are more

heavily relied upon over land than over ocean. Differ-

ences between PR and TMI estimation that arise from

the ice-scattering signal have also been reported, par-

ticularly between deep convection and warm rain events

(Nesbitt et al. 2000; Zagrodnik and Jiang 2013). Re-

garding this issue, we identify the extremes as a function

of polarization-corrected brightness temperature

(PCT), which is calculated based on the vertical and

horizontal 85-GHz brightness temperatures received by

TMI (Spencer et al. 1989):

PCT5 1:818T
BV

2 0:818T
BH

, (8)

where PCT is the polarization-corrected brightness

temperature, TBV is the vertically polarized brightness

temperature, and TBH is the horizontally polarized

brightness temperature at TMI 85GHz. For identifying

the extremes as a function of PCT, the definition of ex-

treme in this research is slightly different than the gen-

eral definition. In this research, an extreme is derived

from the uppermost 1% of rain events at each 5-K

PCT bin.

3. Intercomparison of mean, difference value, and
RMSD

The results of mean, difference value, and RMSD

analyses are presented in this section. Approximately

two-thirds of the study domain is ocean (66.14%), while

the remainder is coast (22.77%) and land (11.09%)

(Table 1). A comparison of the unconditional and con-

ditional means for each surface type is presented in

Table 1. This table shows that TMPA has the highest

unconditional mean when compared with PR and TMI

for all surface types, that is, 0.21, 0.32, and 0.23mmh21

for ocean, land, and coast, respectively. In contrast to

the unconditional mean, TMPA has the lowest value for

any surface type as observed from the conditional mean.

TMI tends to produce the highest conditional means

when compared with PR and TMPA. The TMI condi-

tional mean for land is 2.74mmh21 and for coast is

2.55mmh21, while PR produces the highest condi-

tional mean over ocean (2.41mmh21). The differ-

ences between PR–TMI conditional means are further
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investigated based on its original pixel-by-pixel standard

deviations within each TMPA grid resolution. The PR

standard deviations for ocean, land, and coast are 3.60,

3.87, and 3.82, while TMI standard deviations are 1.67,

2.59, and 2.55. In general, PR yields higher rain-rate

variations than TMI within the 0.258 3 0.258 grid reso-

lution. It is possible that rain events detected by PR

contain smaller precipitating areas than TMI because

the PR swath is narrower than the TMI swath.

To obtain more detailed information than the mean

values from all rain rates, it is useful to identify the rain

occurrence above specific rain-rate thresholds as a frac-

tion of the total number of observations, as shown in

Table 2. A comparison of rain frequencies over ocean,

land, and coast shows that generally, the land surface

often has the highest rain frequency. As identified by

Qian (2008), this contrast likely results from the strong

afternoon heating over land that draws large moisture

flux from the ocean, which then condenses into rain in

the central part of the islands. The rain rate remaining

the highest over land holds for light rain to heavy rain

from .0.5 to .20mmh21. Furthermore, this table also

provides support for the previous result related to the

large number of very light rain rates identified by

TMPA. In this case, TMPA has a higher frequency for

very light rain rates (.0.5 and .1mmh21) but de-

creases to less than PR and TMI for the higher thresh-

olds (.5mmh21 and above). At the middle-to-upper

range, PR tends to identify a higher number of rain

events relative to the other two estimates. The higher

PR frequency is particularly found over ocean and coast

from rain rates . 5 to . 40mmh21 thresholds. In con-

trast to PR, TMI tends to identify higher rain frequen-

cies for medium to heavy rain over land, from .10

to .30mmh21. Although this table can define the

general characteristics of rain frequencies, a closer look

at each specific rain rate is required. A detailed analysis

was obtained by further elaboration with a more com-

prehensive statistical analysis based on cumulative

contribution, as presented in the next section.

The result of difference value analysis (HD, MD, and

FD) is presented in Table 3, and the RMSD between

each pair of products is shown in Table 4. Both of the

analyses show that PR–TMI often produces the largest

difference when compared with the other data pairs,

TABLE 1. Total number of grid boxes (including nonraining grids), unconditional mean (average of all grid boxes $0mmh21), and

conditional mean (average of all grid boxes for .0.5mmh21) based on each surface type.

Total number of grid boxes Unconditional mean Conditional mean

Ocean Land Coast Ocean Land Coast Ocean Land Coast

PR 0.19 0.28 0.20 2.41 2.55 2.48

TMI 14 578 000 (66.14%) 2 444 200 (11.09%) 5 019 500 (22.77%) 0.17 0.26 0.14 2.04 2.74 2.55

TMPA 0.21 0.32 0.23 1.97 2.40 2.41

TABLE 2. Percentage of grid boxes for rain rate . 0.5 to .
40mmh21 based on each algorithm and surface type. Surface

maximums are displayed in bold font.

Number of grid boxes Surface

Percent of total data

PR TMI TMPA

Ocean 8.0149 8.2439 10.8422

.0.5mmh21 Land 10.9565 9.3488 13.1510
Coast 8.1611 5.4697 9.3435

Ocean 5.0773 4.81 6.7406

.1mmh21 Land 7.5153 6.8109 9.0515
Coast 5.4264 3.8474 6.2759

Ocean 0.9077 0.6744 0.7026

.5mmh21 Land 1.3362 1.2065 1.3944

Coast 0.9631 0.6585 1.0307
Ocean 0.2329 0.1208 0.1173

.10mmh21 Land 0.3019 0.3731 0.2833

Coast 0.2380 0.1393 0.2133

Ocean 0.0901 0.0394 0.0267

.15mmh21 Land 0.0869 0.1330 0.0734

Coast 0.0871 0.0452 0.0684

Ocean 0.0335 0.0167 0.0089

.20mmh21 Land 0.0392 0.0468 0.0217

Coast 0.0272 0.0152 0.0226

Ocean 0.0060 0.0048 0.0019

.30mmh21 Land 0.0041 0.0055 0.0026

Coast 0.0051 0.0020 0.0035

Ocean 0.0013 0.0011 0.0005

.40mmh21 Land 0.0007 0.0004 0.0006

Coast 0.0012 0.0002 0.0007

TABLE 3. Cross matrix of HD, MD, and FD of rain rate between

each pair out of the three algorithms (mmh21). The results are

classified based on each surface type from left to right. The HD,

MD, and FD are shown from top to bottom. The highest difference

for each surface is displayed in bold font.

Ocean Land Coast

TMI TMPA TMI TMPA TMI TMPA

HD PR 0.43 0.09 0.09 20.05 0.63 20.05

TMI — 20.30 — 20.20 — 20.77
MD PR 20.88 20.92 21.37 21.22 21.27 21.21

TMI — 20.82 — 21.06 — 21.44

FD PR 0.90 0.79 1.22 0.86 1.33 0.87

TMI — 0.61 — 0.74 — 0.73
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regardless of surface types. The PR–TMI high MD and

FD imply that the majority of the differences are closely

related to the nonrain and rain classifications by each

product. Based on the conditional RMSD, TMI–TMPA

is the smallest in the total RMSD for all three surfaces

(1.36, 1.92, and 1.95mmh21 for ocean, land, and coast,

respectively). However, the systematic component of

the RMSD shows that the difference between PR and

TMPA is smaller over ocean and coast.

4. Rain-rate contribution

This section presents an analysis of the probability

distribution of rainfall in terms of cumulative probabil-

ity, exceedance probability, and mean rain rate as a

function of the TMI 85-GHz PCT.

The first result, shown in Fig. 2, provides the cumu-

lative probability contribution among the three datasets.

The main feature is that PR provides the smallest con-

tribution to low and medium rain rates when compared

with TMI and TMPA. The contribution of rain rate from

the minimum up to 10mmh21 is approximately 70%–

80% for PR, while higher contributions are achieved by

TMI and TMPA in the same range. The TMPAfs cu-

mulative contribution is higher than PR and TMI for any

given rain-rate value, particularly over ocean and land.

The higher cumulative contribution is possibly gener-

ated by a large number of light rain events, which are

responsible to the TMPAfs low conditional means

shown in Table 1. The TMI contribution, when com-

pared with TMPA, shows a similar pattern. However,

TMI has a smaller contribution than TMPA for low-to-

medium rain rates, particularly over land. The TMI

contribution is approximately 80% at 10mmh21 over

land, which is close to PR. Over coast, the TMI contri-

bution is consistent with TMPA.

The exceedance probability is presented in Fig. 3. The

result indicates that PR generally produces a higher

exceedance probability than TMI and TMPA over

ocean and coast. This result provides an explanation for

Table 2, where PR identifies a higher number of rain

events .10 and .20mmh21 over ocean and coast than

the other two datasets, while TMI is higher over land. It

appears that the TMI land algorithm produces a higher

exceedance probability than PR between 10 and

25mmh21. However, the TMI exceedance probability

rapidly decreases after .25mmh21. This result is fur-

ther examined in section 5.

Figure 4 shows a comparison of themean rain rate as a

function of TMI 85-GHz PCT. Over land, all the algo-

rithms produced similar results when TMI 85-GHz

PCT . 200K, while for lower PCTs, TMI tends to

show higher rain rates than the other two datasets. The

higher TMI rain rate below 200-K PCT is also observed

over coast, but the spread occurs at lower PCT (at ap-

proximately 160K). This spread presumably explains

why TMI exhibits a higher frequency of rain events for a

rain rate of .10mmh21. It could be implied that the

higher exceedance probability of TMI over land shown

in Fig. 3 is due to the frequent rain events with PCTs

below 240K. The excess of TMI rain for low PCTs is not

observed over ocean, which may be expected because

TABLE 4. Cross matrix of conditional RMSDs and the contri-

bution of systematic RMSDss (mmh21) between each algorithm

(for rain rate. 0.5mmh21). The highest RMSD at each surface is

displayed in bold font.

Ocean Land Coast

TMI TMPA TMI TMPA TMI TMPA

RMSD PR 2.01 1.62 2.67 1.98 2.57 2.00

TMI — 1.36 — 1.92 — 1.95

RMSDs PR 0.35 0.29 1.35 0.57 1.04 0.61

TMI — 0.44 — 0.49 — 1.19

FIG. 2. Cumulative contribution to mean rain rate (%) from PR (solid black line), TMI (dashed black line), and TMPA (dashed gray line)

for (a) ocean, (b) land, and (c) coast, calculated from each 0.258 square grid from 1998 to 2014.
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the TMI land algorithm relies entirely on the ice-

scattering channels.

5. Comparison of extreme rainfall

The previous result in Fig. 4 shows that the ice scat-

teringmay not be tightly linked to the surface rainfall. In

particular, the TMI land algorithm is known for being

insensitive to light rain without ice particles (Furuzawa

and Nakamura 2005; Rajendran and Nakazawa 2005;

Zagrodnik and Jiang 2013). The apparent inconsistency

between the exceedance probability plot (Fig. 3b) and

rain-rate–PCT plot (Fig. 4b) over land is further in-

vestigated in this section. Figure 5 presents a two-

dimensional histogram of rain rate and TMI PCT. The

relationship between rain rate and PCT is broadly

spread except for the TMI land and coast, in which the

rain rate is tightly correlated with PCT. This result is

likely because the TMI land and coast algorithms do not

rely on the emission channels. Although the mean rain

rate as a function of PCT (shown as black plus signs in

Fig. 5) indicates that the TMI land and coast algorithms

are higher than PR and TMPA at an intermediate rain

range, the histogram shows that the TMI rain–PCT

curve over land and coast rarely contains rain rates

higher than 20mmh21 except at the lowest PCTs.

However, PR rain can exceed 20mmh21 over a wide

range of PCTs over the three surfaces.

Figure 6 shows the PCT–rain relation as plotted in

Fig. 4 but calculated from the samples limited to the up-

permost 1% rain rate. PR consistently has the highest

rain rate for all PCTs over land and coast when compared

with TMI and TMPA. This result is in contrast with the

mean rain-rate–PCT plot presented in Fig. 4, where TMI

is the highest over land for an intermediate range of rain

rates when compared with the two other datasets. Com-

parison of the two figures shows that there are differences

related to the range of the data distribution inside the

TMI land algorithm, especially between themean and the

uppermost values as a function of PCTs.

FIG. 3. Probability of exceedance for PR (solid black line), TMI (dashed black line), and TMPA (dashed gray line) based on each 0.258
square grid from 1998 to 2014. A rain rate with corresponding exceedance value close to 1 indicates a higher probability to occur. The plots

represent each surface: (a) ocean, (b) land, and (c) coast.

FIG. 4. Plots of TMI minimum 85-GHz PCT vs averaged rain rate from PR (filled circles), TMI (plus signs), and TMPA (times signs).

The PCT values are obtained from the minimum value inside collocated 1/48 square grid boxes from 1998 to 2014. Each point represents

the mean value for a 5-K PCT bin. The result is classified into three surface types: (a) ocean, (b) land, and (c) coast.

JULY 2017 S EKARANOM AND MASUNAGA 1875



A remaining question is, as shown in Fig. 5, why are the

heaviest rains detected by PR not necessarily associated

with the lowest TMI PCTs? To address this question, we

examine the storm-top heights from collocated PR 2A23

associated with extreme rain rates of the uppermost 1%

for each PCT bin in Fig. 7. The result indicates that PR,

TMI, and TMPA could produce comparable results over

ocean. As identified by the three estimates, the storm-top

height is from approximately 6km at 10mmh21 to

approximately 8–10km at 30mmh21 over ocean. How-

ever, it appears that TMI yields a higher storm-top height

for any given rain rate over land and coast relative to PR

and TMPA. Over land, TMI indicates storm-top heights

from approximately 8km at 10mmh21 to 12km at

30mmh21. The extreme events derived from PR and

TMPA, in contrast, exhibit lower storm-top heights over

land: from approximately 5km at 10mmh21 to 10km at

30mmh21. Because TMI does not directly observe

FIG. 5. Fraction of the total number of rain events as a function of rain rates and TMIminimum 85-GHz PCTs, obtained from collocated
1/48 square grid boxes from 1998 to 2014. The data are classified by the (top) PR, (middle) TMI, and (bottom) TMPA algorithms and the

(left) ocean, (center) land, and (right) coast surface types. The scale represents fractions of the total data for each plot.

FIG. 6. As in Fig. 4, but for the average of the uppermost 1% rain rate at each 5-K 85-GHz TMI minimum PCT bin.
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surface rain rates but rather relies on the empirical re-

lationship with ice-scattering signals, this relationship

may be somewhat too exaggerated (i.e., excessive ice

scattering for a given surface rain rate) for extreme

rainfall.

The relation of surface rain with PCT is further exam-

ined in terms of vertical rain profiles for 1% extreme

rainfall. Figure 8 shows the PR vertical rain profiles aver-

aged within the extreme subset identified by PR (red),

TMI (green), and TMPA (blue) while considering the

PCT values. The plots are categorized into four PCT

ranges:,160, 160–200, 200–240, and.240K. Over ocean,

the vertical profiles agree well among the three products

for all PCT ranges. At the lowest 85-GHz PCTs (,160K),

the near-surface rain reaches approximately 22–

23mmh21. The near-surface rain rates are decreasing at

higher PCTs: approximately 15, 10, and 3mmh21 for 160–

200-, 200–240-, and.240-KPCTs, respectively.Over land,

the vertical rain profiles disagree among the products as

compared with over the ocean. The PR-identified extreme

rain profiles exhibit a significant increase in rain rate from

5km to near the surface. In contrast, such a downward

increase is more modest for the TMI-identified extremes.

This PR–TMI difference resulted in the TMI’s lower near-

surface rain. For PCTs ,160K, the near-surface rain rate

is approximately 12–13mmh21 when extremes are de-

fined by PR, while the surface rain rate reaches only ap-

proximately 10mmh21 for the TMI-sorted subset. This

kind of difference is also found for PCTs of 160–200 and

200–240K. Comparison of the vertical rain profiles over

the coast also indicates differences that are similar to those

over land.

One might wonder whether the present statistics from

MC precipitation are also representative of global

rainfall characteristics. To address this question, we

present the results of exceedance probabilities obtained

from the global tropics and a few representative regions

across the tropics (Fig. 9). The global exceedance

probabilities (with MC excluded), as shown in Figs. 9a

and 9b, imply that a similar condition also exists on a

global scale. Over global land, the TMI probability is

slightly higher than the PR probability at midrange ex-

tremes (approximately 15–30mmh21). Although the

pattern is similar, MC has a higher PR probability above

30mmh21, while the TMI probability rapidly decreases

at lower rain rates than the global average. Neverthe-

less, the overall characteristics found previously for MC

also apply to the global tropics.

The exceedance probability with four other regions is

also shown in Fig. 9. Plots of ocean probabilities are

represented by east Pacific (Fig. 9c) and west Pacific

(Fig. 9d), while land is represented by South America

(Fig. 9d) and central Africa (Fig. 9f). The probabilities

are homogeneous over ocean but have large variations

over land. The plot over South America produces a

higher PR probability at all ranges when compared with

the TMI, and it yields a different pattern than that ob-

served for MC over global land. Central Africa shows a

contrasting result, in which the TMI probability is higher

than PR for rain rates higher than 10mmh21. The PR

exceedance probability over central Africa in this case is

lower than the PR exceedance probability at the global

scale. The regional contrast suggests that SouthAmerica

provides a relatively oceanic environment for pre-

cipitation to develop, while Africa is under a highly

continental condition (Masunaga et al. 2005).

6. Conclusions and discussion

The results of this study highlight the properties of

different rain-rate estimation among PR, TMI, and

TMPAoverMC for both nonextreme and extreme cases

FIG. 7. Plots of collocated PR storm-top height as a function of the uppermost 1% rain rates from PR (filled circles), TMI (plus signs),

and TMPA (times signs). The uppermost 1% are obtained using TRMM observations from 1998 to 2014. The storm-top height data are

obtained from the average value of collocated PR2A23 at 1/48 square grid boxes and classified into (a) ocean, (b) land, and (c) coast.
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FIG. 8. Collocated PR 2A25 vertical rain-rate mean for PR uppermost 1% extremes (red), TMI uppermost 1% extremes (green), and

TMPA uppermost 1% extremes (blue), as classified by four TMI minimum 85-GHz PCT ranges [(top) ,160, (top middle) 160–200,

(bottom middle) 200–240, and (bottom) .240 K] and (a) ocean, (b) land, and (c) coast. The uppermost 1% are obtained using TRMM

observations from 1998 to 2014. Plus signs indicate 95% confidence interval. Solid color lines on the right represent the corresponding

freezing heights, while dashed ones represent the corresponding PR 2A23 storm-top heights.
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using long-term data records from 1998 to 2014. The

results revealed that the rain rate in general and in the

extreme cases has its own characteristics attributed

to the differences: 1) For the nonextreme rain events

(below 10mmh21), TMI and TMPAhave a higher prob-

ability of detection than PR over the three surfaces. 2)

For moderately heavy rain events (between 10 and

25mmh21), the TMI algorithm over land detects more

frequent rain events than PR and TMPA. 3) However,

the detected extreme events from TMI land algorithm

decreased at above 30mmh21. Further analysis shows

that the TMI extreme events are heavily accompanied

with the strongest ice-scattering signals and highest

storm-top heights, while the PR extremes show aweaker

relationship between the three variables.

The PR–TMI differences in representing the upper-

most 1% extremes highlight the known weakness in the

TMI land algorithm. The TMI land estimates depend on

the existence of ice particles aloft in precipitating clouds

since they assume a tight relationship between ice-

scattering signals and surface rain rates. Heavy rain

events are generally associated with stronger convec-

tion, which contains ice particles aloft. However, it has

been shown that the rain-rate–ice-scattering relation-

ship is not always robust. Very intense rain events

identified by PR are not associated with the highest

storm-top height and are thus unlikely with the most

abundant ice particles aloft. The comparison with the

global exceedance probability provided in the previous

section indicates that higher extreme events are not

necessarily accompanied by extreme ice-scattering sig-

nals, similar to Hamada et al. (2015), while the TMI land

algorithm by design always predicts the heaviest rains

from the lowest PCT. The factors contributing to the

higher PR extremes are now under investigation.

There are several remarks related to this study. First,

despite the PR–TMI extreme contrast over land, it ap-

pears that both estimates are statistically consistent over

ocean, which is possibly due to the use of both emission

and ice-scattering channels for TMI. Second, although

TMI often provides similar results as TMPA for light rain

rates, there are large estimation differences for medium

to heavy rain events, particularly over ocean and coast.

Comparison of the uppermost 1% yields higher confor-

mity between PR and TMPA in terms of ice-scattering

signals, storm-top heights, and vertical rain profiles.

FIG. 9. Comparison of PR (black solid), TMI (black dashed), and TMPA (gray dashed) exceedance probabilities calculated using long-

term data from 1998 to 2014 for (a) global ocean, (b) global land, (c) east Pacific (ocean) 908–1308W, 158S–158N, (d) South America (land)

458–808W, 358S–108N, (e) west Pacific (ocean) 1308–1658E, 58–208N, and (f) central Africa (land) 158–458E, 158S–158N.
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However, the results also suggest that extreme events

from both of the sources are not quite similar, although

TMPA tends to provide rain estimates between PR and

TMI. The main reason between this difference is still

unclear. It is possible that the temporal mismatch be-

tween instantaneous PR rainfall and 3-hourly snapshot

rain data from TMPA may have a significant contri-

bution to this condition (Prakash et al. 2012). Further,

since the extreme cases are selected from 1% of the

upper distribution, the large number of very light rain

events from TMPA could also introduce a bias to

the 1% threshold, which determines the extremes.

Changing the 1% extreme threshold into a higher

specific value does increase the TMPA extreme means.

However, a similar comparison using two specific

thresholds (10 and 15mmh21) shows no significant

differences in the extreme properties, particularly the

vertical rain-rate profiles.
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