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ABSTRACT

This study aims to characterize the background physical processes in the development of those heavy

precipitation clouds that contribute to the Tropical Rainfall Measuring Mission (TRMM) active and passive

sensor differences. The combined global observation data from TRMM, CloudSat, and European Centre for

Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) from 2006 to 2014 were

utilized to address this issue. Heavy rainfall events were extracted from the top 10% of the rain events from

the Precipitation Radar (PR) and TRMM Microwave Imager (TMI) rain-rate climatology. Composite

analyses of CloudSat and ERA-Interim were conducted to identify the detailed cloud structures and the

background environmental conditions. Over tropical land, TMI tends to preferentially detect deep isolated

precipitation clouds for relatively drier and unstable environments, while PR identifies more organized

systems. Over the tropical ocean, TMI identifies heavy rainfall events with notable convective organization

and clear regional gradients between the western and eastern Pacific Ocean, while PR fails to capture the

eastward shallowing of convective systems. The PR–TMI differences for the moist and stable environments

are reversed over tropical land.

1. Introduction

Precipitation estimates derived from satellite observa-

tions are now widely used in various studies related to

meteorology and climatology. One of the earliest pre-

cipitation estimation methods was developed by using

infrared (IR) sensors obtained from geostationary satel-

lites (Griffith et al. 1978). IR sensors measure cloud-top

temperatures as a proxy of surface precipitation estima-

tions, although thesemeasurements are known to serve as

indirect estimations. Currently, precipitation estimations

using passive microwave (PMW) radiometers are widely

used, and many satellites carry these instruments. PMW

radiometers use a more direct approach of measuring

emission signals from liquid-phase hydrometeor contents as

well as scattering signals from ice-phase hydrometeors in-

side precipitating clouds (Wilheit 1986; Wilheit et al. 1994).

A further breakthrough was brought about by the Tropical

Rainfall Measuring Mission (TRMM) (Kummerow et al.

1998). The TRMM was equipped with a Precipitation Ra-

dar (PR) to be used as its active sensor in addition to the

TRMM Microwave Imager (TMI), which acted as the

passive sensor (Kummerowet al. 1998; Simpson et al. 1996).

Various studies have attempted to explore the origins

of the rain-rate differences between PR and TMI

(Masunaga et al. 2002; Yamamoto et al. 2008; Zagrodnik

and Jiang 2013; Liu and Zipser 2014; Henderson et al.

2017), but only a few studies were focused on the ex-

treme events (Sekaranom and Masunaga 2017), which

have a close relationship with disasters. The estimation

of the heavy rain rates from satellites remains chal-

lenging because of the large uncertainties involved in

the estimation process. From a PR point of view, rain
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rates are determined by the relationships between radar

reflectivity Z and rain rate, and between the specific

attenuation k and the received reflectivity Z (Iguchi

et al. 2000). The Z of the PR sensor within the Rayleigh

limit is a product of the sixth moment of the drop size

distribution (DSD), which is written as follows:

Z5

ð‘
0

N(D)D6 dD , (1)

whereN(D) is the particle size distribution as a function

of diameter D (Heymsfield et al. 2002). The above

DSD–reflectivity relationship of the 13.8-GHz radar

frequency is subject to considerable attenuation when

large raindrops are present, as is typical for heavy rain-

fall events. To correct attenuation, a hybrid method in-

volving the Hitschfeld–Bordan and surface reference

technique is utilized (Iguchi et al. 2000, 2009). Previous

studies have found that precipitation estimation biases

derived from the PR arise from the assumptions in the

DSD and attenuation correction (Iguchi et al. 2009;

Kozu et al. 2009; Schumacher and Houze 2000). Some

ground validations indicate that the PR often shows

rain-rate values that underestimate the heavy rain rates

(Henderson et al. 2017; Kirstetter et al. 2013; Zagrodnik

and Jiang 2013), especially for convective rains (Iguchi

et al. 2009). Rasmussen et al. (2013) pointed out that

these differences in extremes over land are likely to be

related to mixed-phase and/or frozen hydrometers.

In contrast to PR, TMI uses a physical-based assump-

tion to derive the relationship between the brightness

temperature and rain rate (TB–R). In the standard TMI

algorithm, TMI utilizes a Bayesian approach to calculate

the probability of the rain rate by comparing the retrieved

and observed microwave signals using a hydrometeor

profile database (Kummerow andGiglio 1994; Kummerow

et al. 2001). Low-frequency TB values of the TMI results

are less sensitive to the DSD assumptions than those from

the PR (Masunaga et al. 2002). However, TMI has its own

uncertainties when characterizing the ice-phase hydrome-

teors from the 85-GHz channel (Shige et al. 2004;

Zagrodnik and Jiang 2013). Moreover, unlike PR, TMI

cannot measure vertical rain structures and, therefore, de-

pends entirely upon assumed vertical cloud structures

(Kummerow et al. 2001). TMI has another disadvantage

when estimating rain rate over land surfaces because of the

noise generated by surface emissions. Therefore, over land

surfaces, the TMI algorithm depends entirely on the

85-GHz channel (Wang et al. 2009). Another significant

issue of the TMI algorithm is related to its general

underestimation trend due to the beamfilling effect

(Kummerow 1998; Kummerow et al. 2004). Since TMI

has a coarser resolution than PR, especially for the

emission channels, biases due to deep isolated precipitation

systems can be more significant than they would be for PR

(Liu and Zipser 2014). Last, although TMI TB does not

strongly depend on DSD, biases could be generated by the

conversion of the liquid water contents to rain rates from

the DSD assumption (Masunaga et al. 2002).

Previous works have demonstrated that the biases

between PR and TMI rain estimation are influenced by

the design and performance of retrieval algorithms.

Over land, Zagrodnik and Jiang (2013) showed that

TMI has an issue with higher rain-rate retrieval.

Petković and Kummerow (2017) found that the fre-

quency of occurrence for specific rainfall regimes con-

taining different profiles of ice particles was essential for

describing TMI–PR rainfall differences. The TMI esti-

mation depends mostly on 85-GHz channels over land,

which is more sensitive to ice particles (Gopalan et al.

2010; Liu and Zipser 2014). The TMI land algorithm in

general estimates higher rainfall associated with higher

ice-scattering signals, while PR is not affected by such

constraints (Sekaranom and Masunaga 2017). Over the

ocean, the discrepancies between the two rain retrievals

are largely associated with the precipitation homoge-

neity (Kummerow 1998; Liu and Zipser 2014; Carr et al.

2015) and convective–stratiform variability within the

TMI–PR footprint (Kirstetter et al. 2015; Carr et al.

2015). The TMI is less sensitive to inhomogeneous rain

because of coarse-resolution channels (63 km3 37km at

10GHz) (Kummerow et al. 1998), which makes TMI

estimates biased to heavier rain from larger pre-

cipitation systems (Liu and Zipser 2014; Carr et al.

2015). Henderson et al. (2017) showed that TMI tends to

produce a higher estimation for the organized stratiform

rain and a lower estimation for the deep-isolated convec-

tive rain than those of PR. Further,Henderson et al. (2018)

found that the central and west Pacific basins TMI–PR

differences were related to regional changes in the level of

precipitation organization due to ENSO variability. This

might be associated with increasing stratiform fraction

during El Niño events (Schumacher and Houze 2006).

Masunaga et al. (2002) identified that the differences

between PR and TMI are associated with different DSD

assumptions. The different DSD assumption, however,

also depends on whether the precipitation is classified as

convective or stratiform (Iguchi et al. 2000). In general,

the proportion of convective and stratiform rains are

influenced by their precipitation organization and its

corresponding thermodynamics environment. Excessive

moisture at the lower to midtroposphere could produce

convective outbreaks over a large area (Sherwood 1999;

Lucas et al. 2000). Higher humidity also could be pro-

duced by the convective feedback, which moistens the

surrounding environment andmakes favorable to future
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convection (Tompkins 2001). Those sustaining convective

systems, in general, could be associated with largely or-

ganized systemswith considerable stratiform components.

In contrast to the precipitation systems developed in a

moister environment, smaller precipitation systems tend

to be developed at a dryer environment (Schumacher and

Houze 2006; Hill and Lackmann 2009). The small pre-

cipitation systems could also be associated with isolated

convective cells (Schumacher and Houze 2003), which

contain no or fewer stratiform components than the

largely organized systems. It is therefore useful to char-

acterize the PR–TMI heavy rain estimation biases in term

of precipitation organization and its corresponding ther-

modynamics environment.

Using previous studies involving the PR and TMI

comparisons and validations (Berg et al. 2006; Furuzawa

and Nakamura 2005; Shige et al. 2006), we can charac-

terize the differences of the PR and TMI results, par-

ticularly for heavy rain events. It has been shown by

Sekaranom and Masunaga (2017) that over some trop-

ical land areas, PR tends to detect heavy rain rates with

lower storm-top heights (STH) better than TMI at any

given rain rate. Furthermore, the corresponding re-

flectivity profiles show a significant increase below the

melting layer compared to that of TMI. These findings

suggest that PR detects extreme warm rain events with

significant collision and coalescence processes near the

surface (Hamada et al. 2015; Song and Sohn 2015).

Hamada et al. (2015) and Song et al. (2017) showed that

the rain with lower STH identified by PR is associated

with a more humid but more stable environment. Song

et al. (2017) further argued that the extreme events

identified by PR could occur in a more stable environ-

ment since the higher humidity enhances the graupel

production in the midtroposphere. The above differ-

ences are less significant over the ocean than over the

land. Sekaranom and Masunaga (2017) showed that

the differences of the STH as a function of rain rate over

the ocean are not as distinct as those over land. How-

ever, studies by Liu and Zipser (2014) showed that TMI

identifies greater precipitation areas than PR over the

global ocean. From the above studies, we could infer

that these extreme biases are related to the amounts of

ice particles at aloft and/or the scale of precipitation

systems and convective variability that might be not

clearly identified from the climatological biases.

Although previous results characterized well the PR–

TMI uses for estimating rain rates, the reasons for why the

different preferences exist were left unresolved. This

study aims to assess the origins of the biases, particularly

for heavy rain events. Identifying the origin of the heavy

rain biases could help in developing more accurate satel-

lite estimations, which are useful in disaster early-warning

systems and understanding the future climate. To address

this issue, the corresponding cloud structures from

CloudSat and the background environmental profiles

from ERA-Interim are utilized. CloudSat provides in-

formation about cloud droplets, which are not captured

by PR. The utilization of CloudSat in this research gives

more detailed background analysis to explain the origin

of the biases.

The description of the datasets and explanations of the

research methodology are shown in detail in section 2.

The PR–TMI differences when estimating heavy rainfall

events are shown in section 3. The differences are further

examined using the CloudSat cloud structures accompa-

nying the PR–TMI differences and are shown in section 4.

The corresponding environmental profiles are shown in

section 5. The discussion of the differences in the physical

processes and their relationships with convective struc-

ture organizations are shown in section 6.

2. Methodology

a. Dataset

This study utilizes the TRMM precipitation data from

PR and TMI as the core dataset for the comparative

analysis. The 94-GHz radar reflectivity data from

CloudSat are used to explain the different cloud struc-

tures associated with the PR and TMI heavy rainfall

events. Several environmental variables from ERA-

Interim were used to explain the thermodynamic envi-

ronments involved in the formation of PR and TMI

heavy rainfall events. The detailed information for each

dataset is shown in Table 1.

The TRMM product used in this research is the ver-

sion 7 level 2 product. The level 2 product contains the

instantaneous precipitation data from TRMM PR and

TMI. The PR precipitation dataset analyzed in this work

was obtained from the near-surface rain rates from the

TRMM PR 2A25 product (NASA 2011c). This product

has an approximately 5 km3 5 km horizontal resolution

at nadir and a 250-km swath width (Iguchi et al. 2000;

Kummerow et al. 1998). The TMI precipitation dataset

was obtained from the TRMM TMI 2A12 product

(NASA 2011b). The horizontal resolution is coarser

than that of PR but has a broader swath width than PR

(6900km) (Kummerow et al. 1998). The TMI surface

flags from the same product are used to classify

the surface types and separate the study area into ocean

and land surfaces. To further examine the details of

the differences originating from the emission and ice-

scattering patterns obtained by the PMW sensor, the

brightness temperature dataset from TRMM TMI 1B11

is also analyzed (NASA 2011a).
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The cloud properties corresponding to the PRandTMI

heavy rainfall events are derived from CloudSat, which

has operated from 2006 until present. CloudSat carries a

94-GHz Cloud Profiling Radar (CPR) that captures the

vertical cloud profiles (Stephens et al. 2002; Austin et al.

2009). By design, the CPR measurements provide only

cross-section profiles of the clouds below its track with a

horizontal resolution of approximately 1.4km 3 1.7km.

This resolution is approximately 3 times finer than that of

TRMM PR. In this analysis, the CPR reflectivity data

from the CloudSat level 2B Geometrical Profile product

(2B-GEOPROF) are used (CloudSat DPC 2017). Cloud

flag data stored in the same product are also obtained to

classify the cloud and noncloud states. The rain-type data

from the CloudSat 2C Precipitation Column product

(2C-PRECIP-COLUMN) are also analyzed to classify

the observed rain events into convective and stratiform

precipitation events. The CloudSat measurements are

matched in space and time with the TRMM.

The ERA-Interim data contain atmospheric re-

analysis products with a horizontal grid resolution of

approximately 0.758 3 0.758 and contain 37 vertical

levels, spanning from 1000 to 1 hPa (Dee et al. 2011).

The ERA-Interim dataset is available for 1979 to the

present (ECMWF 2017), which covers the TRMM and

CloudSat observational periods. The data are available

for 4 times a day. In this analysis, the air temperature,

specific humidity, relative humidity, and vertical veloc-

ity data are used to explain the physical processes cor-

responding to the PR–TMI differences.

b. Data preprocessing

The global tropical areas are divided into several do-

mains to identify the regional differences in the PR and

TMI estimations of extreme rain events. The regions are

further classified into ocean and land subregions. Over

the tropical ocean, the domains are divided into the 1)

global tropical ocean (GlobalTropics; 158S–158N, 1808–
1808), 2)Maritime Continent (MaritimeCont; 158S–158N,

908–1508E), 3) tropical west Pacific (WestPac; 158S–158N,

1508E–1808), 4) tropical central Pacific (CentralPac;

158S–158N, 1308W–1808), and 5) tropical east Pacific

(EastPac; 158S–158N, 908–1308W).Over the tropical land,

the domains were divided into the 1) global tropical land

(GlobalTropics; 158S–158N, 1808–1808), 2) Maritime

Continent (MaritimeCont; 158S–158N, 908–1508E), 3)

SouthAmerica (SouthAm; 358S–158N, 458–808W), and 4)

central Africa (CentralAf; 158S–158N, 158–458E). The

domains are shown in Fig. 1. The analysis spans 2006–14,

when TRMM, CloudSat, and ERA-Interim data are

available.

First, the precipitation data from PR and TMI are

plotted onto a 0.258 3 0.258-resolution grid, following

Sekaranom and Masunaga (2017). All sample data

points (raining and nonraining pixels) inside each grid

point are averaged to represent the gridpoint rain-rate

value. This process ensures that the influences of the

differences of the original PR and TMI resolutions when

capturing precipitation are minimized. A heavy rainfall

event database is then constructed by taking the up-

permost 10% of the grid rain rates by using rain-rate

distribution defined in each region. The uppermost 10%

thresholds for each region are shown in Table 2. Using

the 10% threshold as an extreme criterion rather than

using an even higher threshold ensures that the com-

bined datasets capture sufficient observations. The da-

tabase contains information about the grid rain rate, the

grid center coordinate, the maximum rain rate inside the

grid, the geolocations of the maximum rain rates inside

the grid, and the recording times of each identified heavy

rainfall event.

The TMI brightness temperature data are also grid-

ded following the same rules as the PR and TMI pre-

cipitation data. Over the ocean surface, the brightness

temperature data from all nine TMI channels are ana-

lyzed. Only the brightness temperature data from the

85-GHz vertical and horizontal polarization channels

are used for the land surfaces. The ocean and land sur-

faces are also determined using the TMI surface flag at

the 0.258 3 0.258 grid resolution. If more than two-thirds

of the grid is dominated by ocean flags, the grid is clas-

sified as an ocean grid. A similar criterion was used for

TABLE 1. Data description.

Platform Instrument Description Resolution Target parameters

TRMM PR 13.8-GHz radar 4.3 km (at nadir) Near-surface rain rate (2A25), corrected

radar reflectivity (2A25)

TRMM TMI Passive microwave

imager

Varies from 7 km 3 5 km (85GHz)

to 63 km 3 37 km (10GHz)

Near-surface rain rate (2A12), brightness

temperatures (1B11)

CloudSat CPR 94-GHz radar 1.4 km 3 1.7 km Radar reflectivity

ERA-Interim — ECMWF Re-Analysis Gridded 0.758 Air temperature, specific humidity, relative

humidity, and vertical velocity profiles
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the land grids. Grids that did not fulfill the above con-

ditions were not considered in this analysis.

The combination of TRMM-CloudSat data are achieved

by using a similar method to that described by Masunaga

(2012). In this analysis, the precipitation events identified

by the TRMM are utilized as the coordinates and time

centers to bematchedwith theCloudSat data.Utilizing the

temporal differences between the TRMM and CloudSat

data, the precipitation cloud properties before, at, and af-

ter extreme events are reconstructed. Although the tem-

poral changes could be easily obtained, identifying the

heavy precipitation clouds at a 0.258 3 0.258 resolution

could produce inaccurate results sinceCloudSat has a very

narrow field of view (FOV). Therefore, only slices of the

TRMM gridded data that overlap with the CloudSat FOV

(1.4km 3 1.7km) are considered. The coordinates with

the maximum rain rates inside each TRMM grid are uti-

lized to ensure that CloudSat captures the center of the

heavy precipitation systems. Only grids where the Cloud-

Sat coordinates are centered between25 and15km from

the coordinate of the TRMM maximum rain rate are

selected. In addition, CloudSat cross sections that

occupy less than 80% of the length of each grid

(’15 CloudSat profiles within each grid) are removed.

The maximum time difference between the TRMM

andCloudSat observations is set to61.5 h. These strict

criteria limit the number of samples from CloudSat to

about 80 samples over the land domains (Table 3). The

1.5-h time window is selected because narrower time

lags (20, 40, and 60min) have been found to show

consistent results among each other except for and

enhanced statistical noise owing to the reduced

sample size.

Two-dimensional (horizontal distance–height) com-

posite cloud fractions are constructed to diagnose the

PR andTMI extreme precipitation cloud structures. The

composite cloud fractions are generated by using a

similar method to that described by Igel et al. (2014).

In the first step, clouds are identified using the minimum

detected reflectivity threshold of 228 dBZ. The corre-

sponding heavy precipitating clouds are identified by

iteratively classifying contiguous adjacent cloud pixels

surrounding the cloud pixels located at the nearest dis-

tance to the TRMMmaximum rain inside each grid. The

iteration process will classify contiguous cloud pixels

as a single cloud. Therefore, only the single cloud closest

to the coordinate of the maximum rain rate inside each

grid point is considered when building the composite

cloud fractions. Each single cloud from a set of obser-

vations are stacked together into composite cloud

structure to represent the cloud vertical and horizontal

extents. Although the precipitating systems have various

sizes and shapes associated with them (e.g., Nesbitt et al.

2006), the composite of the heavy precipitating clouds

are considered to statistically represent the ‘‘average’’

cloud structure. The minimum number of cloud com-

posite is about eight observations over the Maritime

Continent land and higher for other regions, so the

composite structure is unlikely to be distorted by a sin-

gle, exceptional event.

To further explain the PR and TMI extreme pre-

cipitation cloud differences, the convective and strati-

form cloud fractions are calculated using the CloudSat

rain-type flags. The convective:stratiform ratios are

FIG. 1. Regional domains in this analysis. Shaded colors show the number of CloudSat deep

convective cases over 1) the global tropics, 2) theMaritimeContinent, 3) the west Pacific, 4) the

east Pacific, 5) South America, and (6) central Africa.

TABLE 2. The uppermost 10% rain-rate thresholds to determine

extreme rain events at each domain.

Region

Ocean Land

PR TMI PR TMI

GlobalTropics 10.86 9.16 11.78 12.42

MaritimeCont 11.43 9.31 11.39 10.81

WestPac 10.95 9.18 — —

EastPac 10.55 9.38 — —

SouthAm — — 11.79 11.11

CentralAf — — 12.27 13.68
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calculated for each 1.5-h bin for the 6 h before and after

the heavy rain rates were identified by the TRMM.

In contrast to the TRMM instantaneous rain rates, the

ERA-Interim dataset has 6-h observation intervals and

coarser resolutions than the gridded precipitation da-

tabase. In this analysis, those ERA-Interim grid co-

ordinates nearest to the corresponding TRMM grid are

obtained to represent the environmental profiles. Only

the ERA-Interim data that fall between 1.5 h before and

after the TRMM extreme events are considered. The

potential temperature and specific humidity profiles are

then averaged for each ocean and land region. The

convective available potential energy (CAPE) is calcu-

lated to explain the relationship between the PR–TMI

extreme rain rates with environmental instability:

CAPE5

ðEL
LFC

g

"
u(z)2 u

y
(z)

u
y
(z)

#
dz ,

where LFC is the level of free convection, EL is the

height of the equilibrium level (neutral buoyancy), u(z)

is the virtual potential temperature of the specific parcel,

uy(z) is the virtual potential temperature of the envi-

ronment, and g is the acceleration due to gravity. The

CAPE was averaged for each 1.5-h bin from 24h before

and after the extreme events observed in the TRMM,

similarly to the method described by Masunaga (2012).

3. TRMM PR and TMI differences

In this section, the observed differences between the PR

and TMI when identifying heavy precipitation events are

demonstrated. First, the joint distribution plots of the col-

located TMI 85-GHz minimum polarization corrected

brightness temperatures (PCTs) versus the rain rates are

shown. The 85-GHz PCTs could be utilized as a proxy of

the amount of ice particles near the cloud top. Lower

85-GHz PCTs indicate the existence of abundant ice par-

ticles from theobserved rain event. The 85-GHzPCTswere

calculated using the TB differences between the vertical

TBV and horizontal polarizationsTBH , followingZagrodnik

and Jiang (2013), where PCT5 1:818TBV 2 0:818TBH .

Plots of the probability distribution functions (PDFs)

of the collocated TMI brightness temperatures corre-

sponding to the PR and TMI uppermost 10% rain rates

are also compared in this section. Over the ocean do-

mains, the PDF plots for the 10-, 19-, 21-, 37-, and 85-GHz

brightness temperature data are presented. Over the land

domains, only the 85-GHz brightness temperature data

are shown. The plots of the collocated TMI 85-GHz

minimumPCTs versus the rain rates over each ocean area

are shown in Fig. 2. This figure indicates that both PR and

TMI show a broad relationship between the near-surface

rain and the collocated 85-GHz PCTs. The broad re-

lationship indicates that heavy rain occurrence do not

strictly associated with the amount of ice particles. A

similar result was obtained by Sekaranom andMasunaga

(2017) over the Maritime Continent. The figure also

shows that for TMI, the upper-end distributions of ex-

treme events are found at higher PCTs compared to PR.

In Fig. 2, the white lines pinpoint the PCT where the

maximum number of events are observed for rain rates

above the uppermost 10%. The TMI lines correspond to

slightly higher PCTs at some regions compared to PR.

This indicates that TMI estimates heavy rain events with

fewer ice particles than identified by PR.

The plots of the collocated TMI 85-GHz minimum

PCTs versus the rain rates over the land domains are

shown in Fig. 3. This figure shows the clear contrast be-

tween PR and TMI. The PR joint distribution plots show

similar relationships for the ocean domains. In contrast to

PR, TMI shows a strong relationship between the two

parameters. This strong relationship is expected since the

TMI land algorithm has a ‘‘built in’’ linear relationship

between the rain rates and 85-GHzTB values (Sekaranom

and Masunaga 2017). As a result, TMI tends to detect

higher numbers of events at lower PCTs (about 160–180K

above the uppermost 10% rain events, as shown via the

white lines in Fig. 3). This confirms that heavy rain events

identified by TMI over land are accompanied by a large

amount of ice particles. Extreme rain events identified by

PR, on the other hand, do not directly depend on the

amount of ice particles similarly to over ocean.

The PDF plots of the collocated TMI 85-GHz bright-

ness temperatures for the PR and TMI extreme events

over the ocean domains are shown in Fig. 4. This figure

shows that the TMI exhibits a contrast between the

Maritime Continent to the eastern Pacific Ocean. The

Maritime Continent is characterized by warmer sea sur-

face temperatures (SST) because of its position between

the Pacific and the Indian Ocean warm pools (Ramage

1968). The PR extreme events tend to have lower 10-GHz

brightness temperatures than the TMI extremes over the

TABLE 3. Total number of observed CloudSat-collocated profiles

for the TRMM rain rate greater than the uppermost 10%.

Region

Ocean Land

PR TMI PR TMI

GlobalTropics 2092 1703 730 940

MaritimeCont 457 396 103 80

WestPac 339 268 — —

EastPac 175 174 — —

SouthAm — — 432 491

CentralAf — — 176 220
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Maritime Continent. The TMI extreme events produce

slightly lower brightness temperatures at 85-GHz than the

PR extreme events over the Maritime Continent. This con-

trastswith theeasternPacificOcean,where theTMIextreme

events have higher brightness temperatures at 85-GHz than

the PR extremes. The brightness temperature contrast in-

dicates that TMI identifies more heavy rain events with

abundant ice particles over theMaritime Continent than PR

identifies, and theopposite is trueover theeastPacificOcean.

The plots of the collocated TMI 85-GHz brightness tem-

perature PDFs for the PR and TMI extreme events over the

land domains are shown in Fig. 5. All the regions show that

the TMI extreme events are characterized by lower bright-

ness temperatures than the PR extreme events at the right-

most edge of the distribution, while the TMI PDF is skewed

slightly warmer than the PR PDF. The difference in skew-

ness indicates that TMI tends to identify more rain events

associated with abundant ice particles over all the land do-

mains than PR identifies because of the tight assumption of

rain rates and ice particles in the TMI land algorithm.

4. CloudSat heavy precipitation cloud structure
differences

A comparison between the PR and TMI datasets

suggests that the active and passive TRMM sensors are

systematically different in their methods of identifying

heavy precipitation events. Further analysis focused on

the detailed cloud structures would be beneficial for

explaining the PR–TMI extreme precipitation event

differences. In this section, the differences between the

PR–TMI extreme events are compared by utilizing the

CloudSat observations. The composite cloud fractions

and convective and stratiform cloud fractions from

CloudSat are examined next. Last, the PR–TMI differ-

ences in identifying heavy rain events are examined in

terms of the convective organizations. Since many var-

iables could be utilized to characterize this organization

(Rickenbach and Rutledge 1998), in this research, the

organizations are simply defined with regard to the

horizontal scales of the systems. The more organized

systems are associated with larger cloud structures and

vice versa. This assumption is supported by CloudSat

observation from different timewindows that shows that

the horizontal cloud extents are continuously increasing

after the convective peaks are reached.

The CloudSat cloud fractions associated with the PR

and TMI extremes over the ocean domains are shown in

Fig. 6. TMI displays regional variations from the Mari-

time Continent to the eastern Pacific Ocean. Over the

Maritime Continent, the TMI extreme events corre-

spond to taller and horizontally extensive clouds.

FIG. 2. Joint distribution of collocatedminima TMI 85-GHz PCTs vs (a)–(d) PR rain rates and (e)–(h) TMI rain rates for ocean regions.

(left to right) Global tropics, Maritime Continent, west Pacific, and east Pacific. The color bar indicates the number of data points. The

white lines indicate the brightness temperature where the rain frequency above the uppermost 10% reached a maximum.
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However, the heights continuously decrease toward the

eastern Pacific Ocean. Over the eastern Pacific Ocean,

the TMI tends to identify shallow clouds. (Liu and

Zipser 2013) showed that shallow–wide clouds are

predominant in this area. TMI somehow detects these

clouds as extremes rather than detecting the taller

clouds identified by PR. Moreover, the differences

among the ocean regions identified by PR do not display

this gradual change. Shige et al. (2008) showed that PR

captures the contrast between the western and eastern

Pacific Oceans that mainly occur during La Niña. In the

present results, the PR rainfall over the eastern Pacific

Ocean produces a similar profile to that of the western

Pacific Ocean, possibly because this work exclusively

targeted extreme events.

The corresponding PR and TMI extreme precipitation

cloud fractions over the land domains are shown in Fig. 7.

The CloudSat cloud fractions over the land domains dif-

fer from those over the ocean domains. All land domains

show that the TMI extreme events are confined to narrow

convective cells. In contrast, the PR extreme events are

generated bymore horizontally extensive cells with lower

cloud-top heights than those of TMI. Sekaranom and

Masunaga (2017) showed that the PR extremes with

relatively low STHs could generate greater rain rates

(.30mmh21) than the TMI extremes with taller STHs.

Yamamoto et al. (2008) found a time lag between the

peaks of the convective rainfall events detected by PR

and TMI. This implies that the PR and TMI detect

different stages of convection. In this research, the

CloudSat convective and stratiform fractions were used

to characterize the degrees of convective organization.

The CloudSat convective and stratiform fractions cor-

responding to the PR and TMI extreme events over the

ocean and the land domains are shown in Fig. 8. A dif-

ferent feature is observed between the Maritime Con-

tinent and the eastern Pacific Ocean. Over theMaritime

Continent, an earlier convective peak is identified by

TMI, occurring approximately 3 h before the extremes

detected by the TRMM, while the PR convective peak

occurs 1.5 h before. Liu and Zipser (2014) showed that

TMI tends to detect greater precipitation areas than PR.

The greater precipitation areas could be generated by

more horizontally extensive cells with earlier convective

peaks than those detected by PR.

From the above results, we can characterize the PR–

TMI differences in terms of the convective organiza-

tions. The degree of organization of the systems also can

be characterized based on the time differences between

the peaks. Over the Maritime Continent ocean, TMI

captures more organized systems than PR. This result is

reversed over the eastern Pacific Ocean, where TMI

captures less organized systems than PR. Over land, the

PR in general captures more organized systems than

TMI. Over the Maritime Continent land, the less orga-

nized systems identified by TMI are associated with a

FIG. 3. As in Fig. 2, but for the land domains.
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FIG. 4. Collocated TMI brightness temperatures for the PR andTMI extreme events over the oceans for (left to right) each

region and (top to bottom) the brightness temperature channels.
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later convective peak than PR, whereas over South

America and central Africa, the less organized pre-

cipitation systems identified by TMI are associated

with a larger convective fraction (Figs. 8g,h).

5. Influence of environmental conditions on the
PR–TMI rain-rate estimation differences

To further study the physical processes in the pre-

cipitation cloud development, comparisons of the

environmental profiles from ERA-Interim are given in

this section. First, the potential temperature and hu-

midity profile differences corresponding to the PR and

TMI extreme events are compared. The influence of the

instabilities in the PR and TMI heavy precipitation

cloud development is further explained using the

corresponding CAPE.

The corresponding PR–TMI environmental profile

differences over the ocean domains are shown in Fig. 9.

The results show that the TMI extreme events occurred

FIG. 5. As in Fig. 4, but for the land domains.

FIG. 6. CloudSat collocated cloud fractions for the (a)–(d) PR extreme events and (e)–(h) TMI extreme events over the examined ocean

domains. (a),(e) Global tropical ocean, (b),(f) Maritime Continent, (c),(g) west Pacific, and (d),(h) east Pacific.
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in more humid environments than those of PR. A con-

trast is also observed from the Maritime Continent

compared to the eastern Pacific Ocean. Lower heights at

which the humidity difference is largest are observed

over east Pacific Ocean compared to the Maritime

Continent ocean. Over the Maritime Continent and

west Pacific Ocean, the TMI extreme events correspond

to higher humidities throughout the troposphere. Over

the eastern Pacific Ocean, the humidity excesses for the

TMI extremes are reversed and become humidity defi-

cits above 500 hPa and near the surface.

The PR extreme events over the ocean domains

generally have slightly warmer potential tempera-

tures near the surface, but have colder values above the

500-hPa level than those of the TMI extreme events. The

Maritime Continent–eastern Pacific Ocean contrast is

also present in the potential temperature profiles. As

identified by PR, the Maritime Continent is character-

ized by lower potential temperatures in the midtropo-

sphere and shows only slight differences from the TMI

values near the surface. Over the eastern Pacific Ocean,

the near-surface temperature differences become larger.

The corresponding PR–TMI environmental profile

differences over the land domains are shown in Fig. 10.

This figure shows that the PR extreme events occur at

higher specific humidities than the TMI extreme events

for all identified regions, except near the surface, which

differs from the results for the ocean extremes. Higher

specific humidities were observed, especially at the

850–500-hPa level. Furthermore, the corresponding PR

extreme events show colder potential temperatures near

the surface than those of the TMI extreme events. The

greater humidity but lower potential temperature dif-

ferences corresponding to the PR extreme events were

also identified by Hamada et al. (2015) and Song and

Sohn (2015). However, the ocean has considerably dif-

ferent thermodynamic characteristics than those of the

land domains, and clouds cannot be explained by the

above results.

To examine the possible temporal change of the

above environmental profile differences, temporal plots

of the specific humidity and potential temperature over

the global tropical land and ocean are shown in Fig. 11.

The figure shows that over land, a deepening of the

lower-tropospheric cold bias and a rapid development of

dry bias toward the time of the precipitation occurrence

are observed in association with the TMI extremes

compared to the PR extremes. The overall patterns are

nevertheless qualitatively similar to what has been seen

at t 5 0 (Figs. 9 and 10). Over ocean, the temporal

changes are even less significant compared to the land

environmental profiles.

FIG. 7. As in Fig. 6, but for the land domains. (a),(e) Global tropical land, (b),(f) Maritime Continent, (c),(g) South America, and

(d),(h) central Africa.
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The CAPE plots corresponding to the PR and TMI

extreme events over the ocean and land domains are

shown in Fig. 12. In general, the highest rain rates are

detected with downward slopes after the CAPE drops

following a maximum that resembles tropical deep

convective clouds (Masunaga 2012). In general, the PR

extreme events over the ocean domains have higher

CAPE values than the TMI extreme events. The ocean

FIG. 8.CloudSat convective fractions for the PR extreme events (red line) and TMI extreme events (green line) over the (a)–(d) ocean and

(e)–(h) land. The shaded color represents the 95% confidence interval.

FIG. 9. Potential temperature anomalies (pot.temp_diff; orange) and specific humidity anomalies (shum_diff; blue) from theERA-Interim

over ocean regions in terms of the PR–TMI differences.
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CAPEs are also higher for the western Pacific compared

to the eastern Pacific, with the CAPE reaching a maxi-

mum over the Maritime Continent. TMI extremes pre-

fer slightly more stable environments than the PR

extremes as implied by the potential temperature

profiles shown earlier.

Over the land domains, the corresponding TMI

CAPEs are greater than the PR CAPEs with notable

diurnal variations. This result indicates that the TMI ex-

treme events occur in more unstable environments than

the PR extreme events, differing from the ocean com-

posite. Regional differences of the CAPE in Fig. 12 show

that heavy rain events over the Maritime Continent

(land) and central Africa in general are generated by

higher CAPE than over South America. Lower CAPE

might be associated with precipitation that is generated

by the more oceanic environment over South America

(Masunaga et al. 2002; Sekaranom and Masunaga 2017).

Extreme rain events with high CAPE are identified over

central Africa, which is often associated with strong af-

ternoon heating (Liu and Zipser 2005). The strong in-

stability is possibly related to the higher rain rates

estimated by TMI than PR for the general rain events

(Liu and Zipser 2014). However, for extreme rain events,

the PR captures some events that are associated with a

more stable environment than identified by TMI.

6. Discussion and conclusions

This study investigates the precipitation biases from

the TRMM active–passive sensors due to cloud and envi-

ronmental properties. The combination of the TRMM,

CloudSat, and ERA-Interim data provides comprehensive

information to explain the PR–TMI estimation differences.

The general properties of the PR–TMI differences in

identifying the heavy rainfall events are further discussed in

this section.

Noticeable differences between the PR and TMI ex-

treme events are observed over the land domain. The clear

ice-scattering signatures (Fig. 3) and horizontally confined

cloud structures (Fig. 7) of the TMI extremes indicate that

the TMI heavy rain events are associated with isolated

deep convective clouds over land (Fig. 13b, right). Plots

from the ERA-Interim data show that the TMI extreme

events over landoccur in drier free-troposphere conditions

but in more unstable environment than the PR extreme

events. The CAPE patterns (Fig. 12) also indicate that the

diurnal forcing strongly controls the heavy rain events,

primarily via afternoon surface heating (Yamamoto et al.

2008). The more unstable environment produces higher

cloud tops and can produce more abundant ice particles

aloft (Song et al. 2017), which can then produce a stronger

ice-scattering signal.

In contrast to the deep isolated clouds identified by the

TMI, the PR extremes over land tend to be associated

with more organized systems (Fig. 13b, left). The absence

of a strong relation between thePR rain rates and theTMI

85-GHz PCTs (Fig. 3) implies that the PR extremes are

not always associated with a substantial amount of ice-

phase hydrometeors aloft (Furuzawa andNakamura 2005;

Sekaranom and Masunaga 2017). The extreme pre-

cipitation clouds corresponding to the PR extreme events

show more horizontally extensive convective cells than

those associated with the TMI heavy rainfall events

(Fig. 7). The PR heavy rainfall events are associated with

moister environments in the free troposphere as well as

FIG. 10. As in Fig. 9, but for the land domains.
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more stable environments than the TMI heavy rainfall

events (Fig. 12). This more stable environment produces

lower cloud-top heights and less confined cloud structures,

which include warm rain extremes (Song et al. 2017).

Thesewarm rain extremesmay bemissed byTMI because

of the lack of ice particles.

The TMI extremes are not essentially different from

the PR extremes over ocean domains in terms of their

PCTs (Fig. 2). However, the collocated TMI microwave

emissions indicate regional differences of TMI over the

ocean domains (Fig. 4) that also differ from the PR ex-

treme events. Over the eastern Pacific Ocean, the col-

locatedCloudSat cloud-top heights corresponding to the

TMI extreme events are lower than those of the PR

extreme events (Fig. 6). It appears that their horizontal

extent is much larger than those of individual cumulus

clouds (Liu and Zipser 2013), although it is smaller than

found in other oceanic regions. (Fig. 13a, bottom right).

The shallow horizontally extensive clouds are associated

with moister environments near the surface but drier

environments than those of their PR counterparts at

approximately the 500-hPa level (Fig. 9). The shallow

horizontally extensive clouds were also found in a more

stable environment than that identified by PR (Fig. 12).

In contrast to the shallow horizontally extensive clouds,

the higher cloud-top heights associated with the PR

heavy rainfall events correspond to more unstable

environments.

FIG. 11. Temporal changes of the potential temperature anomalies and specific humidity anomalies from

the ERA-Interim before and after heavy rain events identified by the TRMM. The plots are for global tropical

(a),(c) ocean and (b),(d) land in terms of the PR–TMI differences.
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Comparisons among the ocean domains show a re-

gional transition of the extreme precipitation cloud

structures from the eastern to western parts of the

Pacific Ocean. Over the western Pacific Ocean, the

CloudSat profiles show that the horizontal extents are

slightly broader for the TMI extremes than for the PR

heavy rainfall events (Fig. 6). The TMI convective

fraction is greater, and its peak occurs earlier than the

PR convective peak, which implies that TMI detects

heavily organized precipitation systems (Fig. 13a, top

right). Based on the corresponding environmental

conditions, the TMI extreme events tend to occur in

more humid and stable environments than the PR ex-

treme events (Fig. 12). In the case of TMI extreme

events, the moister environment (Fig. 9) could produce

more extensive convective cloud systems. The moister

environment could be partially due to rain evaporation

in stratiform clouds, which moistens the atmosphere.

A comparison over the ocean domain suggests that

the beamfilling effect (Kummerow 1998) has a strong

influence on the TMI heavy rain-rate estimation. Over

both the eastern and western Pacific Oceans, TMI cap-

tures horizontally extensive clouds despite the cloud-top

heights being lower over the eastern Pacific Ocean.

This result suggests that TMI tends to detect larger

precipitation areas than PR, as identified by Liu and

Zipser (2014). Furthermore, the result shows that this

strong emissionmight be associatedwith higher stratiform

fractions. As identified by Henderson et al. (2017), TMI

tends to estimate higher rain rates for stratiform rain

than PR.

This paper attempts to explain the differences be-

tween the TRMM PR and TMI when identifying

heavy rainfall events over the global tropical lands

and oceans. The results show that PR and TMI detect

heavy rainfall events from distinct physical processes

that can be explained in terms of precipitation orga-

nization. Characterizing this organization could pro-

vide a potential application for reducing the biases

between the PR and TMI rain-rate estimations. The

results presented in this paper also represent a po-

tential contribution to improving satellite precipita-

tion estimations and their derived products when

active–passive satellite sensors are combined.

The future works of this research will focus on

whether different degrees of precipitation organization

could be utilized to reduce the rain estimation biases

between the PR and TMI and on whether the bias pat-

tern as a function of organization is consistent over time,

particularly across different ENSO phases.

FIG. 12. Temporal changes of the collocated CAPE from the ERA-Interim data for the PR extreme events (red) and TMI extreme

events (green).
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FIG. 13. Illustration of the PR–TMI differences when identifying heavy rainfall events as associated

with organized precipitation. (a) The contrast between the eastern and western Pacific Oceans; (b) the

differences over land.
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