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A B S T R A C T

The advent of global precipitation data sets with increasing temporal span has made it possible to use them for
validating climate models. In order to fulfill the requirement of global coverage, existing products integrate
satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars),
which are used as reference for the satellites. While the resulting product can be deemed as the best-available
source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting
wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on
the use of precipitation data sets for climate research, including model validation and verification for improving
physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are
presented, and a protocol for quality assurance of both observational databases and models is discussed. The
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paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in pre-
cipitation observations for climate model validation.

1. Introduction

Precipitation is a major element in the Earth's hydrological cycle
and at the same time is tied dynamically to the atmospheric circulation
by redistributing the latent heating through the troposphere.
Precipitation thus serves as a critical linkage between the global water
and energy cycles.

Among the key questions in this outstanding research topic is how
much global precipitation has been changing over time in association
with global warming. It is known that precipitable water has increased
with temperature nearly as rapidly as predicted from the Clausius-
Clapeyron eq. (6–7% K−1), while the rate of global precipitation
change is expected to be only a few % K−1 at best (e.g., Allen and
Ingram, 2002). The lower amplitude increase in precipitation may be
understood in terms of the energy budget constraint that latent heating
must be balanced primarily by the atmospheric radiative cooling
(Mitchell et al., 1987).

The fact that water vapor increases faster than precipitation on a
global scale suggests that as a whole the Earth's hydrological cycle
slows down in the warming climate. On the other hand, future climate
projections also imply that on a regional scale precipitation intensifies
where it is already moist in the present climate (IPCC, 2014). As such, a
full understanding of the nature of precipitation under delicate balance
(or short-term imbalance) in the global water and energy budget re-
mains a major challenge. We are therefore in urgent need of long term,
continuous and accurate measurements of global precipitation to better
document how the climate system behaves and better prepare for the
future climate change (cfr. Michaelides et al., 2009; Michaelides,
2013a, 2013b, 2014, 2016).

However, although precipitation measurements are often con-
sidered as the “truth” to validate models against, it is important to be
aware that measurements have their own uncertainties of different
kinds. Rain gauge analyses such as the Global Precipitation Climatology
Centre (GPCC) product (Becker et al., 2013; Schneider et al., 2014,
2017), for example, have spatial representativeness issues since the
ground stations are highly inhomogeneously distributed over land and
are totally absent over oceans (Kidd et al., 2017).

Satellite data products are superior to gauge products in spatial
coverage over the globe but are subject to retrieval errors and biases.
Merged data products such as Global Precipitation Climatology Project
(GPCP; Adler et al., 2016; Huffman et al., 2009) and Climate Prediction
Center (CPC) Merged Analysis of Precipitation (CMAP; Xie and Arkin,
1997) have been among the most extensively used products for model
validation purposes. Their use in climatological studies is in constant
growth as the temporal coverage of the data sets increases (Kidd, 2001).
In those products, multiple satellite and gauge measurements are
combined so as to maximize the spatial and temporal sampling, but
retrieval errors are generally even more difficult to track down in the
merged products owing to the complexity of the algorithm.

The purpose of this paper is to discuss how currently available
precipitation data sets may be used to validate climate models, to il-
lustrate the uncertainties and limitations of the products and simula-
tions, and to propose a common set of standards for both reference data
sets and climate models in order to avoid pitfalls and issues arising from
different practices between the observational and modeling commu-
nities.

2. Data sets of global precipitation

For climate-scale comparisons of the precipitation component of the

hydrological cycle, complete, global precipitation data sets are required
and much effort is spent on providing climatologically-sound data sets,
with particular attention paid to avoid possible inconsistencies in such
products. However, note that at present no single-source of global
precipitation measurements exists (Michaelides et al., 2009). Many
single-source data sets exist that provide climate-scale precipitation
products, some of which are combined to provide multi-sourced global
precipitation products.

In terms of coverage, surface data per se essentially refers to land-
only measurements (including islands). Even over the land areas there
is great variation in the availability and density of the observations
(Kidd et al., 2017), which affects the representativeness of the mea-
surements. Over the oceans, the few islands that provide measurements
do not adequately represent the precipitation over the surrounding
oceans or even accurately represent the immediate oceanic surround-
ings. Some land areas are now covered by surface-based radar net-
works; these regions tend to have also adequate gauge measurements,
but gauges don't adequately capture the spatial variability of rainfall
that radar can provide. Satellite data sets, although touted as ‘global’
are usually nearly global, typically being limited to 60°S to 60°N due to
the extent of the available satellite observations, or to the limitations in
the retrieval schemes.

2.1. Surface-based data sets

2.1.1. Rain gauge-based products
A great number of instruments are designed to provide in situ

measurements of precipitation. The most common and longest-serving
is the rain gauge. Gauges designed for measuring precipitation (rainfall
and snowfall) represent the fundamental, de facto standard of pre-
cipitation measurements across the globe. Sevruk and Klemm (1989)
and New et al. (2001) put the number of gauges worldwide at more
than 150,000, while Groisman and Legates (1995) estimated the
number of ‘different’ gauges to be as many as 250,000. While it is
certain that many gauges exist, these numbers depend largely upon
their construction principles (i.e., what is considered as a valid gauge),
their density and or gauge record; in particular, not all gauges have
operated continuously or simultaneously. Indeed, the number of gauges
available at a particular temporal resolution, for a specific period, or
with a certain temporal latency depends greatly upon regional/national
data policies. The reader can find an up-to-date appraisal of gauge
coverage and distribution in Kidd et al. (2017).

Despite the impressive number of gauges, their availability and
therefore representativeness across the Earth's surface is highly variable
(see Kidd et al., 2017). The vast majority of gauges over the Earth's
surface are concentrated in populated regions. Over the oceans very few
gauges exist with most being ‘coastal’ and not necessarily re-
presentative of the open ocean. Furthermore, while the number of
gauges that report daily accumulations of precipitation might be con-
sidered adequate, gauges that report sub-daily precipitation (critical for
extreme pluvial events) are very limited in number (Kidd et al., 2017).

The basic rain gauge has a number of limitations. Sevruk and
Klemm (1989) noted more than 50 different types of gauge design
(whether aerodynamic or not) with different orifice size and heights
above ground. At the gauge-scale, the ‘capture’ of precipitation by a
rain gauge is affected by the wind flow around the orifice (Duchon and
Essenberg, 2001). Turbulence induced by the wind-gauge interaction
interrupts the flow across the gauge orifice affecting light precipitation
the most but to some extent also heavy rainfall (Duchon and Biddle,
2010), resulting in an under-catch at low intensities and higher wind
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speeds (Nešpor et al., 2000).
Although pit gauges are generally deemed to produce as close to the

correct ‘surface’ precipitation as possible, these are difficult to maintain
and are therefore extremely few in number. Errors may also arise due to
physical problems (such as blockages of the gauge orifice and eva-
poration of precipitation from the funnel/collector) or electronic/re-
cording issues (problems with data loggers, or written records). Most
gauges have difficulty in accurately recording snowfall since most are
primarily designed for the collection and measurement of rain; the
lower fall speed of snow compounds wind-orifice effects and thus af-
fects the (in)efficiencies of the gauges (Goodison et al., 1998;
Rasmussen et al., 2012). While rainfall can be usually measured to
within 10–20% in one-minute intervals (Vuerich et al., 2009), wind-
effects may result in less than 25% of the snowfall being caught
(Goodison et al., 1998).

At the local scale, the exposure of the gauge within the local en-
vironment is critical to the spatial representativeness of the gauge
measurement. Standards set by the WMO are designed to ensure con-
sistency among gauge measurements to reduce inherent errors caused
by siting or exposure (WMO, 2008). However, the auto-correlation
length of precipitation is surprisingly small particularly for in-
stantaneous precipitation (Habib et al., 2001); even gauges in close
proximity exhibit a good degree of variability (Ciach, 2003). Accumu-
lating precipitation over time increases the correlation length (Bell
et al., 1990), although the correlation length is dependent upon the
meteorology of the precipitation event and the local topography.

The conversion of the gauge information into the final precipitation
product can lead to differences, not only related to the number of
gauges available. A number of schemes exist to take the point mea-
surements of the gauges and provide a spatial estimate of precipitation.
Although a simple task at first glance, particularly where gauge density
is high, the use of different schemes and criteria may lead to different
end results. Interpolation schemes such as kriging, are used to try and
reduce processing errors, although the interpolation scheme itself may
introduce biases in the final product.

A more “subtle” aspect needs also to be considered regarding the
timing of the gauge observations, which notably differs between the
various national networks. This sometimes creates untagged multi-day
accumulations with clear implications for the comparisons with other
sources of data (e.g., Viney and Bates, 2004).

While gauge data are generally used “as is”, errors and uncertainties
associated with such precipitation measurements are reasonably well
understood and corrections or further quality control measures can be
applied. However, despite errors, rain gauges remain arguably the most
accurate instrument by which to measure rainfall at the surface.

A number of global daily gauge data sets exist, as summarized in
Tapiador et al. (2012) (Tables 1–5), that provides precipitation pro-
ducts at varying temporal and spatial resolutions. Despite the number of
gauge products, it should be noted that many gauges contribute to one
or more gauge products and thus such data products are not necessarily
independent. Indeed, much of the variations in the gauge analyses
originate in the quality control and the point-spatial conversion meth-
odology.

The Global Precipitation Climatology Centre (GPCC; Becker et al.,
2013) provides perhaps the foremost repository of global precipitation
data derived from gauges. The GPCC gridded product is generated from
data obtained from 180 institutions, providing a total of about 85,000
gauge locations having provided observations at least once since the
start of the data set in 1901. The Full (long-term or climatological)
GPCC analysis is designed to provide a high-quality product. To ensure
continuous records of precipitation from any single station, the GPCC
imposes a 10-year minimum constraint. This limits the number of
available stations as of 2013 (2015) to 67,298 (75,165) for the best
month, or 67,149 (75,033) for the worst. The total is 65,335 (73,586)
stations across all 12 months of the year (Becker et al., 2013; Schneider
et al., 2015). This Full product is updated about every 2 years.

Other global data sets include the CPC Gauge-Based Analysis of
Global Daily Precipitation (Xie et al., 2010) and the Global Historical
Climatology Network (GHCN; Menne et al., 2012), both of which pro-
vide daily gridded precipitation products derived from meteorological
observations worldwide. The number of available gauges in the CPC
data set varies considerably by year (and by region/year) with a max-
imum number of precipitation observations of just over 30,000 stations,
about half of which are in the US. The GHCN collects precipitation data
from approximately 7500 gauges while snow depth is measured from
about 17,000 stations, again virtually all in the US.

The Climate Research Unit (CRU, at the University of East Anglia)
gauge product (Mitchell and Jones, 2005) aims to provide a consistent
precipitation data set at a resolution of 0.5° × 0.5° globally (excluding
Antarctica) from 1901 to 2001 (New et al., 2000). The number of
gauges used varies over time, ranging from a minimum of 4957 in 1901
to a maximum of 14,579 in 1981. To interpolate these gauge data to the
0.5° × 0.5° grid, a minimum 30-year record is required for a particular
gauge.

Although the products mentioned above provide similar global
monthly precipitation totals (e.g., Chen et al., 2002), these products
tend to differ at regional scales due to contributions from different
gauges, particularly where the gauge density is low such as over tro-
pical Africa and tropical South America (Qian et al., 2006) and differ-
ences in the analysis procedures. For example, issues in validation are
expected in the CRU product over the Amazon between 1901 and 1921
when only one station was available for this large region.

While not being global, regional data sets, such as the APHRODITE
product (Yatagai et al., 2012) based over SE Asia, the China Gauge-
based Daily Precipitation Analysis (CGDPA; Shen and Xiong, 2016), the
European Climate Assessment (ECA) for Europe (Klein Tank et al.,
2002), and the database described by Liebmann and Allured (2005) for
South America are often able to obtain a greater number of regional
gauges through local sources and tailor the final product to particular
region characteristics, such as topography. For example, due to the
complex topography in the domain of the APHRODITE product, topo-
graphic information is used to better constrain the interpolation of the
gauge information to the final gridded product.

2.1.2. The role of radars and disdrometers
Other surface-base instruments, such as radars and disdrometers are

also widely used for measuring precipitation, but lack the coverage and
longevity of record necessary for wide-area analysis. However, these
are included for completeness and in recognition that they may provide
useful information on precipitation intensities and characteristics that
could be useful in validation climate models locally or regionally.

Surface-based radars now provide good quality spatial measure-
ments over most of the US/Canada, Europe, Western Russia, Japan,
Korea, Australia, and New Zealand. Weather radars offer frequent
spatial observations of precipitation over relatively large areas in near
real time for time-critical applications, such as flash floods, etc. They
can provide useful information to modelers on the spatial and temporal
variability of precipitation together with rain intensity distribution.
However, radars do have a number of limitations, such as range effects,
blockages of the radar beam, and imprecise backscatter/precipitation
rate (Z-R or Z-S) relationships. Calibration against surface rain gauges
together with improvements in radar technology have reduced some of
the errors associated with the Z-R relationships, allowed the phase of
precipitation to be retrieved and the variability of the DSD to be as-
sessed (e.g., Chandrasekar et al., 2012). Polarimetric measurements
allow significant steps forward in precipitation estimation (e.g., Bringi
and Chandrasekar, 2001). At the same time, dual-polarization radar
measurements of precipitation are influenced by size, shape, orienta-
tion, and phase of the hydrometeors, and thus these measurements are a
powerful tool for identifying hydrometeor characteristics along with
precipitation intensity (e.g., Herzegh and Jameson, 1992;
Vivekanandan et al., 1999).
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Disdrometers are designed to retrieve key physical properties of
precipitation particles, such as the drop size distribution and the par-
ticle shape, across a range of precipitation types (Chang et al., 2009;
Adirosi et al., 2016; Thurai et al., 2016), temporal scales (Tokay and
Short, 1996), and spatial scales (Tapiador et al., 2010; Jaffrain et al.,
2011). However, there are known biases due to the small measurement
area of the instruments (Tapiador et al., 2017), with single disdrometers
severely incorrectly estimating instantaneous rain rate (up to 70%) and
underestimating the mean diameter of the rain drop size distribution.
For climate-scale verification, however, these instruments have the
potential to investigate the representation of precipitation particle types
within models and also to help understanding the precipitation pro-
cesses that generate these particles.

2.2. Satellite estimates

Satellite estimates of remotely-sensed precipitation have been
available over much of the globe for almost four decades and have the
potential to be available on a truly global scale. Critically, satellite es-
timates have a distinct advantage for assessing precipitation over data-
sparse land and ocean regions. Satellite observations from visible, in-
frared, and in particular, passive and active microwave systems are
used to generate precipitation estimates using a number of techniques
(Kidd and Huffman, 2011), although techniques differ in performance
regionally and temporally. Simple techniques based upon the calibra-
tion of the observations using surface (or satellite) radar may yield
useful results, although greater insight into the precipitation char-
acteristics may be obtained through the use of more complex physical
modeling techniques (e.g., Kummerow et al., 2000, 2001, 2007).

2.2.1. Infrared-based methods
Observations in the (thermal) infrared channels (IR) allow cloud top

temperatures to be retrieved, and through a simple relationship be-
tween cloud top temperatures and surface precipitation may be used to
retrieve precipitation. However, the actual relationship is considerably
more complicated than this simple information can describe.
Nevertheless, techniques such as the Global Precipitation Index (GPI;
Arkin and Meisner, 1987), the Convective/Stratiform (CST; Adler and
Negri, 1988), the Auto-Estimator (Vicente et al., 1998), and the Hydro-
Estimator (Scofield and Kuligowski, 2003) have proved effective at
large-scale precipitation estimation. Some visible/infrared fused tech-
niques have utilized artificial neural networks (ANN), and for example,
the Precipitation Estimation from Remote-Sensed Information using
ANN (PERSIANN; Sorooshian et al., 2000) uses multi-source informa-
tion from satellite and surface data sets to establish, and update the
relationship between surface precipitation and IR observations.
Tapiador et al. (2004) also used ANN to merge PMW with IR data. The
usefulness of observations in the visible (VIS) spectrum is limited by
solar radiation and so these tend to be combined with IR observations.
Several new global datasets dwelling on IR observations have been
proposed recently with the aim of supporting flood and drought studies.
Among them, it is worth mentioning the Climate Hazards group In-
frared Precipitation with Stations (CHIRPS; Funk et al., 2015). Local
datasets are also available and widely used such as, for example, the
Tropical Applications of Meteorology Using Satellite Data and Ground-
Based Observations (TAMSAT; Tarnavsky et al., 2014).

2.2.2. Microwave-based methods
Passive microwave observations provide a more direct measure of

precipitation since the upwelling microwave energy is linked more di-
rectly to the precipitation-sized hydrometeors. While simple techni-
ques, such as frequency differences highlighting the scattering from
frozen hydrometeors may be used, more complex techniques using ra-
diative transfer calculations can be used to build a database of simu-
lated observations and their associated geophysical parameters
(Elsaesser and Kummerow, 2008). Spaceborne precipitation radars

have been flown on a number of missions. The Tropical Rainfall Mea-
suring Mission (TRMM; Kummerow et al., 1998) carried the Ku-band
Precipitation Radar (PR), CloudSat carries a W-band cloud radar
(Stephens et al., 2002), while the Global Precipitation Measurement
mission (GPM; Hou et al., 2014; Skofronick-Jackson et al., 2017) carries
the Ku/Ka band Dual-frequency Precipitation Radar (DPR). These ra-
dars provide not only a measure of surface precipitation, but also the
vertical distribution of precipitation in the atmosphere; the dis-
advantage is that the global coverage is limited, requiring significant
temporal averaging to provide useful (i.e., sample-limited) products.
Combining multi-satellite information has proved useful, as evidenced
by the A-train (Stephens et al., 2002), allowing complementary atmo-
spheric observations to be exploited.

A number of satellite-derived global precipitation products are
available (e.g., Kidd and Levizzani, 2011), although data availability
and retrieval accuracy typically limits these products to the latitude
band 60°S to 60°N. Furthermore, estimates from any single sensor are
infrequent (typically less than twice a day from low Earth orbiting sa-
tellites) and may be deemed to be only a snapshot of precipitation,
posing a severe drawback for documenting the evolution of precipita-
tion. The relative high frequency sampling of geostationary visible/in-
frared sensors is negated by the indirectness of these observations. The
ability to exploit a number of different precipitation-oriented sensors
greatly improves the number of samples, while incorporating the more
direct, but sample-poor microwave estimates with the less direct, but
sample-rich infrared observations promises much improved precipita-
tion estimates.

A number of techniques have been devised to combine information
from both visible/infrared and microwave observations into Level-3
(i.e., gridded daily time scale or finer) products. The Bristol-NOAA
InterActive Scheme (BIAS; Barrett et al., 1987) replaced VIS/IR esti-
mates of precipitation with those derived from the passive microwave;
cloud development and movement was then used interactively to ad-
vect the estimates over time. Adler et al. (1993) calibrated IR cloud top
temperatures with PMW-derived estimates to correct for regional-scale
variations in the cloud-top temperature/rain rate relationships, al-
though these calibrations were generated at relatively coarse resolu-
tions (2.5° × 2.5° monthly). Since most general circulation models
(GCM) assessments use Level-3 products, it is important to understand
the procedures of how these are created.

2.2.3. IR-PMW combined methods
Current combined IR–PMW techniques fall into two main cate-

gories. The first rely upon the calibration of the IR observations by
PMW estimates: The NRL-Blended technique (Turk et al., 2000) and the
Passive Microwave-InfraRed (PMIR) technique (Kidd et al., 2003) use a
moving spatial and temporal window to generate a local relationship
between the fast-refresh IR observations and the precipitation estimates
sourced from the Level-2 (i.e., instantaneous swath-level) PMW ob-
servations. The second methodology relies upon the PMW to provide
the estimate of precipitation and the IR data to track the movement of
the precipitation between adjacent PMW estimates. These are usually
termed advection morphed or Lagrangian time-interpolation schemes.
Examples of advection morphed schemes include the Climate Predic-
tion Center (CPC) Morphing (CMORPH; Joyce et al., 2004), the Global
Satellite Map Product (GSMaP; Kubota et al., 2007) and the Integrated
Multi-satellitE Retrievals for GPM (IMERG; Huffman et al., 2015), while
the Rain Estimation using Forward Adjusted-advection of Microwave
Estimates (REFAME; Behrangi et al., 2010) is an example of a La-
grangian scheme. The PMW estimates may be derived from a number of
techniques. The IR information is used to derive motion vectors along
which to advect the PMW estimates. These motion vectors may be
generated through correlation or mesh-based techniques (Bellerby,
2006) or physically-based approaches (Tapiador, 2008). Additional
steps are used in CMORPH and IMERG to ‘morph’ the estimates be-
tween the starting and ending PMW estimates. The most recent merged
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techniques provide precipitation estimates at resolutions down to
10 km, 30 min over 60°S–60°N.

A number of mature satellite-based precipitation techniques in-
corporate surface precipitation data sets, allowing high spatial and
temporal resolution precipitation products to be generated (e.g.,
Huffman et al., 2009) using surface gauge measurements to provide the
anchor points. Algorithms that emphasize homogeneous input and
processing are referred to as Climate Data Records (CDR), while those
that give the best short-interval estimate are referred to as High-Re-
solution Precipitation Products (HRPP).

The TRMM Multi-satellite Precipitation Analysis (TMPA; Huffman
et al., 2007) provides 3-hourly 0.25° × 0.25° resolution precipitation
data from 50°N–50°S 1998–present, and consists of four products: a
merged-microwave product, a microwave-calibrated IR product, a
combined calibrated-IR/merged-microwave product, and a rain gauge-
adjusted product. The analysis incorporates as many satellite-based
precipitation estimates as possible calibrated to a single sensor. The
near-real time product (3B42RT) is calibrated against the Goddard
Profiling (GPROF) algorithm (Kummerow et al., 1996) TMI data
(2A12RT), while the post-realtime research-grade product (3B42) is
calibrated against the TMI/PR estimates (2B31; Haddad et al., 1997).
Other PMW estimates are then histogram-matched against these pro-
ducts, before being merged into 3-hourly windows centered on the
nominal meteorological observation times (i.e., 0000, 0300, 0600 …
2100 UTC). These combined PMW estimates are the used to calibrate
the IR observations over overlapping 3° × 3° regions. These IR esti-
mates are used to fill gaps in the PMW coverage in each 3-hourly time
step. A final bias adjustment against the monthly GPCC monitoring
gauge analyses is carried out to generate a gauge adjusted 3-hourly
0.25-degree product (3B43; Huffman et al., 2010).

As part of the Global Precipitation Climatology Project (GPCP)
several products are generated and designed to address Climate Data
Record standards. A merged Satellite-Gauge (SG) precipitation analysis
(Huffman et al., 1997, 2010; Adler et al., 2003) provides complete
global monthly 2.5° × 2.5° estimates from 1979 to the present. The
product uses the precipitation estimates from the SSM/I and SSMIS
passive microwave sensors to calibrate geostationary IR observations
over 40°N–40°S. Poleward of this latitudinal band the passive micro-
wave estimates are combined with those generated from TOVS or AIRS.
Over land the satellite precipitation is then adjusted against the full
GPCC rain gauge analysis.

The GPCP One-Degree Daily (1DD) precipitation analysis (Huffman
et al., 2001, 2010), available from October 1996 forward, uses a
Threshold-Matched Precipitation Index (TMPI) between 40°N–40°S to
produce instantaneous precipitation from the geo-IR observations. A
regionally-varying IR threshold is matched against the fractional cov-
erage of the SSM/I and SSMIS-derived GPROF precipitation estimates.
The rain rate of the IR pixel is then computed so that the TMPI monthly
precipitation equals that of the corresponding SG monthly precipitation
total. Outside 40°N–40°S, precipitation estimates from the TOVS and
AIRS sensors are adjusted by the precipitation occurrence of GPROF at
40° latitude.

The GPCP 2.5° × 2.5° pentad precipitation analysis (Xie et al.,
2003) uses the satellite-gauge product to adjust the pentad CPC Merged
Analysis of Precipitation (CMAP) pentad product so that the overall
magnitude of the product matches at the monthly scale but with the
sub-monthly variability of the pentad CMAP product.

The CPC Merged Analysis of Precipitation (CMAP; Xie et al., 1996)
generates 2.5° × 2.5° monthly global precipitation derived from rain
gauges and satellite precipitation estimates. The method of combining
the gauge and/or satellite information uses a maximum likelihood
based upon weights inversely proportional to the square of the random
error of the individual sources. Over land gauge analysis is used as the
reference, while over the oceans the Pacific Atoll data set is used.

2.2.4. Known issues in using precipitation databases for validation
Issues with satellite data products relate primarily to the indirect-

ness and the temporal sampling of the estimates. Although PMW esti-
mates relate to well-founded knowledge of radiation-hydrometeor in-
teractions, significant variability occurs due to the usefulness of the
observations over different surfaces. Over land, only high frequency
channels are useful, and these sense frozen hydrometeors, which means
they sense the ice at the top of the precipitating system rather than the
surface precipitation. Over the ocean, both high and low frequencies
are used, where the latter respond to liquid hydrometeors. Gauge in-
formation to provide a calibration reference may be used to correct
regional and seasonal variations, although the accuracy of the gauge
information is critical.

For proper assessment of GCM's, it is important to understand the
processes that go into the production of global-scale satellite-based
Level-3 precipitation datasets. The quality of the Level-3 products
mentioned above is driven by continuous, short revisit microwave-
based observations. These data originate from a variety of different
sensors and satellites, with different spectral and spatial resolutions,
and quality over land and water surfaces (Turk et al., 2016). Given the
varying revisit time and different sensitivity to precipitation intensity,
the error characteristics associated with merging these many disparate
datasets are not well known (Maggioni et al., 2016). One of the fun-
damental contributors to the overall error Level-3 characteristics is
therefore the properties of the Level-2 precipitation algorithms that are
applied to the different microwave data sources (e.g., Elsaesser and
Kummerow, 2015). Many of these techniques are built upon Bayesian
estimation schemes which, while appropriate, are fully dependent upon
the quality and accuracy of a-priori precipitation estimates provided by
the GPM DPR (Grecu et al., 2009). For example, assumptions made for
the drop size distribution characteristics of the GPM radar-based esti-
mates, therefore “trickle down” and influence the radiometer-based
precipitation retrievals, and eventually the Level-3 merged products
that get used for GCM model verification. As the quality of the GPM
Level-2 products improves, further improvement should result in the
Level-3 merged products.

In summary, as with any data sets, precipitation products have a
number of error sources, although, due to the nature of these products,
quantifying these is problematic. Understanding the provenance of the
input data and the processing scheme is crucial to understanding the
particularities of each precipitation product to ensure that the correct
conclusions on model performance are provided.

With some exceptions, the uncertainties in these data sets are
seldom considered in climate model validation, rendering the exercise
prone to justified criticisms. Also, it is worth mentioning that the ma-
jority of the merged products, either CDR or HRPP, were never intended
to be used for trends as their input data sources drift.

3. Direct verification of climate model precipitation outputs

Most of the databases in the previous section have been compared
with climate models for a variety of purposes, for instance for un-
certainty analyses. In the case of RCM, the majority of such exercises
are aware of the difference between reanalysis-driven and GCM-driven
RCMs, as the overriding influence is the differences in the lateral
boundary conditions, and validation in only meaningful for the re-
sulting aggregated climatologies and not for the temporal sequence of
events.

The models can be validated and verified at several temporal and
spatial scales. Direct comparisons of highly aggregated data (such as the
mean annual precipitation in latitudinal bands) are useful as a first
approximation, but they do not sufficiently prove that a climate model
correctly represents the climate as even early energy balance models
such as Paltridge's (1975) compared favorably with observations at
those scales. Neither is reproducing the annual cycle in mid latitudes a
major challenge, as models can be easily tuned to favor the main mode
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of variability, and even models without microphysics parameterizations
can simulate quite well the seasonal cycle of precipitation. Coarse ag-
gregations (e.g. 5°×5°) are not especially useful either as many basins
are smaller than that or a major driver of precipitation research is hy-
drological applications at local scales.

The minimum set of statistics for validating precipitation in climate
models are the annual and seasonal comparisons, the analyses of bias
and correlations (usually through scatterplots or Taylor diagrams), the
use of probability distribution functions (PDFs), latitudinal and long-
itudinal transects, and time-latitude or longitude diagrams. Spatial in-
dexes such as Geary's or Moran's have also been used (Tapiador, 2010)
to gauge spatial decorrelation. More sophisticated plots, such as the
Hovmöller diagram, are useful for model outputs, but seldom suited for
comparing with small or non-homogenous observational data sets.

Grid point to grid point comparison is a natural test for validating
climate models since most applications of GCM outputs in mitigation
and adaptation are most useful locally. The spatial variability of the
precipitation makes instantaneous comparisons difficult, but climatol-
ogies are fully comparable. Fig. 1 shows a comparison of a standard
Community Earth System Model (CESM) simulation of precipitation for
present climate with several observational data sets, and for the same
period (2000–2015). It is apparent that there is an overall consensus
albeit differences appear (Table 1). The well-known issue of incorrectly
having a split ITCZ appears in the model, but the observational data-
bases agree on the major features of the global precipitation clima-
tology. Fig. 2 shows the corresponding scatter plots for several com-
parisons between model and observational databases.

A tenet of such direct validation is that the spatial and temporal
scales at which the comparison is performed represents a limit for
judging a model (‘scope principle’). One can hardly claim that a model
with a spatial/temporal resolution of 25 km/6 h performs well unless
the validation has been performed at such scales and reasonable scores
have been found. In other words, the ability of the CESM model to
reproduce the main precipitation climatology at 1° resolution in Figs. 1
and 2 does not necessarily imply that the model is suitable at, for in-
stance, daily scale and 25 km spatial resolution.

Favorable scores at such coarse aggregations only show that the
model can be safely used at those scales. Any claim of potential ap-
plicability or positive assessment on the model ability at 25 km/6 h
resolution should be backed by a validation at that scale or at finer scale

(say 5 km/1 h). Otherwise, unsubstantiated claims are likely to appear.
This is important as sometimes RCMs are coupled with, for instance,
crop models with the intent of providing detailed projections of yields
in future climate conditions. If the climate model has not been validated
at the intended working resolution it is doubtful that the results can be
of any practical use, notwithstanding the existence of additional,
stronger issues to question such practice (cfr. Oettli et al., 2011).

There are a number of possible ways in which climate models can be
compared to observations. Satellite estimates are convenient in that,
like the climate models themselves, they tend to be global and homo-
geneous. Critical in any such endeavors, of course, is that the “ob-
servations” are in fact trusted, and do not themselves have biases,
trends or artifacts that would cloud such comparisons.

Here, we discuss three separate topics: absolute magnitudes, spatial
variability, and trends plus temporal variability. These can be viewed as
the first order outputs of the climate models and tests their fidelity in a
macroscopic sense. More complex, but also potential metrics could be
framed around process-related verification as might be related to cli-
mate models' ability to capture the diurnal cycle of precipitation, the
proper partition of convective versus stratiform precipitation or finer
scale triggers such as orography or coastal influences on convection.

A final, but perhaps even more complex form of verification could
be framed around societal question such as a climate models' ability to
capture regional trends in precipitation, reproduce drought indices, or
capture trends in regional precipitation extremes. As these latter
properties would require higher resolution in-situ observations for
verification that have their own uncertainties, we limit ourselves here
only to the first category – the physical evaluation of macroscopic
precipitation properties.

While there are many satellite products available, there are rela-
tively few classes of products that the community has converged upon.
Following Ebert et al. (1996), it is generally accepted that passive mi-
crowave sensors have better instantaneous skill at sensing rainfall than
their VIS or IR counterparts. This is because microwaves are attenuated
only weakly by clouds and can thus sense the broad column of hydro-
meters (e.g., Wilheit et al., 1977). Although VIS/IR methods are gen-
erally limited to cloud top information (e.g., Platnick et al., 2003) their
availability from geostationary satellites allows much better sampling
of the relatively infrequent precipitation events. This led to better
correlations of precipitation at daily and monthly scales (Ebert et al.,

Fig. 1. A comparison of the global annual mean
(2000–2015) of precipitation as simulated by the
CESM model (top) and four different observational
databases. The third row depicts the differences
between the observations (second row) and the
model (top row). The GCM simulation includes
Carbon and Nitrogen cycles.
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Table 1
Cross-correlations of the CESM precipitation estimates with observational data in Fig. 2 (2000–2015 climatology).

Total annual precipitation (at 2.5° spatial resolution) CESM

Global NH SH

CMAP # Points = 13,824 # Points = 6912 # Points = 6912
y = 0.817x + 0.207 y = 0.903x + 0.111 y = 0.725x + 0.342
R2 = 0.747 R2 = 0.818 R2 = 0.671

GPCP # Points = 13,824 # Points = 6912 # Points = 6912
y = 0.787x + 0.339 y = 0.83x + 0.368 y = 0.747x + 0.312
R2 = 0.737 R2 = 0.798 R2 = 0.679

PRECLAND # Points = 6561 # Points = 3865 # Points = 2696
y = 0.89x + 0.249 y = 0.947x + 0.048 y = 0.838x + 0.476
R2 = 0.708 R2 = 0.741 R2 = 0.688

CRU # Points = 4759 # Points = 3673 # Points = 1086
y = 0.94x + 0.139 y = 0.958x + 0.136 y = 0.946x − 0.001
R2 = 0.681 R2 = 0.687 R2 = 0.576

Fig. 2. Scatter plots comparing the annual mean (2000–2015) at
every grid point for different ground reference data (GPCP, CRU,
PRECLAND and CMAP) and a GCM simulation (CESM model); for
the whole planet (left column), the Northern hemisphere
(middle) and the Southern hemisphere (right).

F.J. Tapiador et al. Atmospheric Research 197 (2017) 1–20

7



1996) than the more precise but infrequent microwave observations
from low Earth orbiting satellites. The general approach followed by
algorithm developers has thus been to merge the instantaneous mi-
crowave estimates with more frequent infrared estimates to overcome
sampling limitations.

As mentioned above, because rain gauges are readily available over
land and are still considered to be the reference standard against which
satellite estimates are evaluated, most producers of multi-sensor, multi-
satellite products have also incorporated rain gauge estimates into their
products. This is generally done through some form of optimal inter-
polation scheme to ensure that areas with many gauges do not differ
significantly from their measurements while the satellite has greater
weight in areas with few or no gauges. Adjustments are usually made at
monthly or climatological time scales, although climatological adjust-
ment factors can be applied to instantaneous estimates.

The TMPA (Huffman et al., 2007), GSMAP (Kubota et al., 2007),
and CMORPH (Joyce et al., 2004), IMERG (Huffman et al., 2015), GPCP
(Adler et al., 2003; Huffman et al., 2009) and CMAP (Xie et al., 1996)
are all well-known examples of such techniques that blend microwave
with infrared sampling and gauges for bias corrections. The differences
among these products thus stem from the subtleties employed to merge
the infrared and passive microwave as well as the bias adjustment to
gauges. These subtleties are beyond the scope of this paper but have to
be considered when comparing climate models with observations. In-
stead, and as a first approximation to the problem we focus here pri-
marily on areas of broad agreement among these products as a measure
of where observations can be considered robust (Hegerl et al., 2015).

In this section, we focus on individual sensor estimates along with
the GPCP and CMAP products described above. While TMPA, GSMAP,
CMORPH and IMERG are all high-quality products that may also be
used in some of these applications (Kim et al., 2017; Li et al., 2017a;
Guo et al., 2016), they are designed primarily to produce the highest
possible quality snapshot rainfall product. These products blend all
available information at any given time to optimize sampling and no
effort is generally made to homogenize the time series. This can cause
variations in the product over time as old satellites drop out and new,
generally more capable satellites are introduced into the time series.

3.1. Absolute magnitudes

The TRMM mission did much to bring together different estimates
of precipitation in the tropics. These products have been transferred to

GPM which also shows good agreement in the tropics. Fig. 3 shows the
current zonal mean estimates of precipitation from GPM's Ku radar
(Iguchi et al., 2000), passive microwave radiometer (Kummerow et al.,
1996, 2001), GPCP (Huffman et al., 2009), and CMAP (Xie et al., 1996)
estimates in the tropical band [35°N–35°S]. Agreement is good over
both ocean and land as shown in panel’s b and c respectively. The good
agreement over land is particularly interesting in that GPCP and CMAP
include rain gauge adjustments while the GPM Ku radar and radiometer
estimates are independent of gauges. Notwithstanding that algorithms
were designed with knowledge of reference values, the good agreement
would suggest that tropical precipitation is relatively well measured
and that bias adjustments from gauge analyses are relatively minor at
global scales. The agreement is good even in areas of large rain gauge
concentrations (e.g., US, Europe, Japan and China) where the optimal
interpolation essentially reproduces the rain gauge estimate within a
few percent of the mean rain (Wang et al., 2014).

Matters become more complicated when higher latitudes are in-
cluded. Both active and passive sensors face unique challenges related
to the shallow and often very light precipitation common at high lati-
tudes. Passive microwave sensors are relatively skilled at retrieving the
total water content over oceans. However, small drops associated with
drizzle at high latitudes offer little contrast with cloud droplets at mi-
crowave frequencies. As such, it has always been difficult to relate the
observed emission signal into clouds and precipitation. Hilburn and
Wentz (2008) used observations along the west coast of the United
States to determine the cloud threshold that corresponded to the correct
frequency of precipitation as observed on the ground. Further emission
was then partitioned between cloud water and precipitation to optimize
correlations with surface observations of precipitation.

Other methods such as GPROF (Kummerow et al., 1996, 2001) have
used cloud resolving model simulations to perform the partition be-
tween cloud water and actual precipitation but the method relies on
limited high latitude simulations and may not be universally applicable
(Elsaesser and Kummerow, 2015).

Active sensors on TRMM and GPM have limited sensitivity to
drizzle. While the GPM radar can detect precipitation down to ap-
proximately 0.2 mm h−1 (Hou et al., 2014), this lower threshold cor-
responds to assumed tropical drop size distribution and not to the very
small drizzle drops that are often reported at high latitudes. CloudSat,
in contrast, has enough sensitivity to detect all clouds and drizzle
(Stephens et al., 2008) but cannot detect echoes near the surface when
the attenuation becomes too large, as in an area of heavy rain. CloudSat

Fig. 3. Zonal means for GPM Ku PR V4, GPM GPROF V4, GPCP and CMAP for Sept. 2014–Aug. 2015. Panel (a) is for all surfaces; panel (b) is for land only; while panel (c) is for oceans
only.
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nevertheless represents perhaps the best estimate of climatological
precipitation at these high latitudes.

Fig. 4 focus on the southern hemisphere to show how the GPM
radar, CloudSat, GPCP and CMAP all compare over high latitude
southern oceans. ERA-Interim (Dee et al., 2011) and MERRA-2 (Gelaro
et al., 2017) are also included for reference. The CloudSat zonal means
are still a bit noisy due to the limited sampling of the nadir-only radar
but the general trend can already be discerned. The southern oceans are
shown to illustrate a worst-case scenario as there are no gauges against
which the global merged products such as GPCP may calibrate.

Those issues have to be considered when validating climate models.
Given the extent of tuning that models have there is a danger of over-
fitting parameters to observations that are known to present its own
uncertainties, biases and limitations. For example, the number of pre-
ferred conically-scanning microwave radiometers is expected to de-
crease in the coming decade as the legacy SSMIS sensors reach end-of-
life (Huffman et al., 2015). To maintain global coverage, this implies
more reliance upon the large number of cross-track scanning, coarser
resolution passive microwave sounders. While these relatively abun-
dant observations are more indirectly related to near-surface pre-
cipitation (Kidd et al., 2016), they could also provide measures of the
depth and intensity of convection (Haddad et al., 2017).

3.2. Spatial variability

While issues related to the detection thresholds of active and passive
sensors, as well as attenuation at high rain rates (particularly for W-
band radars) require some mitigation or at least merging of different
satellite estimates, spatial variability is generally quite consistent
among different satellite estimates. This is particularly true for TRMM
and GPM that sample across the entire diurnal range. To illustrate this
behavior, Fig. 5 shows an annual mean map for GPCP and the GPM Ku
radar products. While a difference map would largely highlight the

Fig. 4. Zonal ocean means precipitation from −35 to −90 S (i.e. Antarctic shelf) for 6
estimates: GPCP, GPM- Ku radar, CMAP, ERA and MERRA-2, and CloudSat.

Fig. 5. Annual mean daily rainfall (mm/day) for the GPCP and GPM
Ku-based radar algorithm (V4).
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smaller sampling of the radar product compared to the multisatellite-
based GPCP, the very good agreement is clearly visible. Other products
have similar agreements (Katsanos et al., 2016; Retalis et al., 2016).
This can be attributed largely to accumulations resulting largely from
moderate rainfall (1–10 mm h−1) that are retrieved quite well by most
sensors.

3.2.1. Trends and temporal variability
It is important to differentiate trends and variability at the global

scale, which may be due to changes in the overall climate system, from
temporal changes at regional scales that tend to follow the general
circulation and are closely related to the spatial variability. The latter,
characterized by such effects as interannual variability, or the mani-
festation of El Nino Southern Oscillation (ENSO) in the Central Pacific,
are easily detectable in the various satellite records as illustrated by
time series of TRMM radar, radiometer, GPCP and CMAP times series of
precipitation over a 20° × 20° area centered over the central Pacific
[10°S to 10°N; 170°E to 170°W] as shown in Fig. 6.

In contrast to regional variability, trends and variability at global
scales are more difficult to assess and there is less agreement among
satellite products. This difficulty arises because the global trend and
variability are the residue of the relatively large, opposing-sign varia-
tions at the regional scale. A comparison among GPCP, CMAP, the
TRMM passive microwave product and the RSS products (Hilburn and
Wentz, 2008) illustrates this fact. Fig. 7 shows these products averaged
over the tropical oceans for a 15-year period corresponding to the
TRMM era.

In terms of overall magnitudes, the agreement among GPCP, the
TRMM product and the RSS product are quite good while the CMAP
product produces 10% more precipitation. If land is included (not
shown), the agreement between GPCP and CMAP improves as both
products rely on more or less the same gauges for bias adjustments.
However, CMAP also has more pronounced variability over this time
period that is not seen in the other products. The GPCP time series
appears to have the least variability of the remaining three products.
This may be related to the nature of the radiometer scheme used in the
GPCP algorithm itself as different algorithms can have different sensi-
tivities to changes in precipitation system structure and morphology.

A possible explanation for these differences can be found in the
TRMM record which also shows disagreement between its radar and

radiometer estimates when averaged over tropical oceans as shown in
Fig. 8 By using a well-characterized dual-polarized radar at Kwajalein,
it is possible to explain the differences in terms of the frequency of
occurrence of unique precipitation states, defined as shallow, isolated
deep convection, and organized convection. When viewed by con-
vective organization, the ENSO related biases can be explained as mere
shifts of deep isolated convection to more organized convection (largely
in the Central Pacific) as the ENSO persists. This sensitivity of micro-
wave sensors (both active and passive) remains an issue that the GPM
dual frequency radar is in the process of untangling.

At this time, it is somewhat problematic to use these global scale
trends and variations to validate climate models as there is still some
disagreement among the satellite products themselves. However,
looking at the envelope of the observational products, models that lie
outside such envelope need to be treated with care. In particular, ENSO
moves around the precipitation without driving large global changes,
according to the satellites. We note similar difficulties with rain gauge
only products, where wind corrections can sometimes alter the con-
clusions about precipitation trends at the global scale (e.g., Metcalfe
et al., 1997; Ungersböck et al., 2001).

4. Validation of the physics

Apart from performing direct validation against precipitation da-
tabases, there are other strategies for using observations to improve
climate models. In this respect, the limitations of models include the
precise modeling of the ENSO phenomenon (Neale et al., 2008), the
representation of the diurnal cycle of rainfall (Betts and Jakob, 2002) or
the frequency of occurrence of high- and low- intensity rainfall events
(Sun et al., 2006). All these issues have been identified long ago, still
persist, and are directly related with the representation of subgrid-scale
processes such as convection. Note that the validation of precipitation
physics may be premature for GCMs, but is included here as the GCMs
are quickly reaching resolutions where cloud permitting para-
meterizations become a reality (e.g., Bretherton, 2015).

A major research topic to improve the water cycle modeling and
addressing such issues is comparison of modeled and observed latent
heat (LH). Latent heat release is a consequence of phase changes be-
tween the vapor, liquid, and frozen states of water, which cannot be
measured/detected using present observational instruments. The
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Fig. 6. Time series of TRMM radiometer (TMI GPROF 2010,
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only, V1201) times series of precipitation over a 20 × 20° area
centered over the central Pacific [10°S to 10°N; 170°E to
170°W].
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vertical distribution of LH has a strong influence on the atmosphere,
controlling large-scale tropical circulations, exciting and modulating
tropical waves, maintaining the intensities of tropical cyclones, and
even providing the energetics of midlatitude cyclones and other mid-
latitude weather systems (Li et al., 2017b; Melcón et al., 2017).

Another direction is in the field of microphysics (MP). This is the
framework through which to understand the links between interactive
water vapor, aerosol, cloud and precipitation processes. Global mea-
surements of microphysics are important to avoid overfitting the
models to specific places when tuning the empirical parameters, which
is the standard procedure to adjust models to observations (Voosen,
2016).

A third way of dealing with evaluating climate model physics is
setting up dedicated ground validation (GV) campaigns designed to
provide multisource, complementary information on precipitation
processes. Here the combined use of databases from instrumented

research aircraft, radars, and satellites is invaluable, but complicated
logistics, costs and technical difficulties both limit and make extremely
valuable existing campaigns such as iFloodS (Ryu et al., 2016), ipHex
(Barros et al., 2014) or OLYMPEX (Houze et al., 2017).

4.1. The use of latent heat (LH) measurements to evaluate models

The launch of the TRMM satellite in November 1997 provided a
much needed and accurate measurement of rainfall as well as the
ability to estimate the four-dimensional (4D) structure of latent heating
(LH) over the global tropics (Simpson et al., 1988, 1996).

The success of TRMM made it possible to have another major NASA
precipitation measuring mission, the GPM mission. GPM is considered
by NASA to be the centerpiece mission of its Global Water & Energy
Cycle research program. Cloud Resolving Models (CRMs) have been
identified as being a valuable tool for algorithm developers and is

Fig. 7. Time series of tropical oceanic precipitation from the
TRMM mission radiometer product (TRMM 3A12), Remote
Sensing Systems (RSS), GPCP and CMAP.
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considered a key component for one of the major GPM ground valida-
tion (GV) sites. In addition, CRMs are one of the most important tools
used to establish quantitative relationships between diabatic heating
and rainfall. Thus, simulated data from the Goddard Cumulus Ensemble
(GCE) have been used extensively in TRMM for the development of
both rainfall and heating retrieval algorithms (Simpson et al., 1996; Tao
et al., 2006).

Five different TRMM LH algorithms designed for application with
satellite-estimated surface rain rate and precipitation profile inputs
have been developed, compared, validated, and applied for over two
decades (Tao et al., 2001, 2006, 2016b). They are the: (1) Goddard
Convective-Stratiform Heating (CSH) algorithm, (2) Spectral Latent
Heating (SLH) algorithm, (3) Goddard Trained Radiometer (TRAIN)
algorithm, (4) Hydrometeor Heating (HH) algorithm, and (5) Pre-
cipitation Radar Heating (PRH) algorithm. The strengths and weak-
nesses of each algorithm are discussed in Tao et al. (2006).

Ling and Zhang (2011) compared the heating profiles between
TRMM retrieved (CSH, SLH and TRAIN) and global re-analyses (ERA-1,
JRA25 and CFSR). All heating data exhibit three longitudinal maxima
but with different amplitudes; for example, heating over South America
and Africa is much stronger in three models (CSH, SLH, and CFSR) than
the others. Heating is obviously weaker over the Maritime Continent
than over the eastern Indian Ocean and western Pacific in some data
(e.g., Q1, TRAIN LH, ERA-I Q1, and JRA25 Q1) but not so in others.
Among all, TRAIN has the largest low-level heating over the east Pa-
cific, which might be an overestimate owing to shallow convection
(Grecu et al., 2009). Low-level heating over the eastern Pacific is also
present with smaller amplitudes in Q1 from ERA-I and LH from CFSR.

The distribution of boundary heating of the LH from CFSR is almost
the same, and it may also be related to precipitating marine stratus
clouds over the ocean (VanZanten et al., 2005). The two heating peaks
are more obvious in some TRMM and other reanalysis data, such as LH

from CSH and SLH and Q1 from ERA-I (Fig. 9). The double peak in the
heating field has previously been observed and discussed (Zhang and
Hagos, 2009; Takayabu et al., 2010). It is reasonable to say that the
upper peak is related to precipitation by cold (ice or mixed phase)
clouds and the lower one to precipitation by warm (liquid phase)
clouds. LH in TRAIN and CFSR and Q1 in JRA25 do not have any ob-
vious double-peak structure.

Ling and Zhang (2011) also pointed out that the discrepancies
among the heating data sets are not merely between the TRMM and
reanalysis data sets or between LH and Q1. Differences within the
TRMM and reanalysis products, respectively, and within various pro-
ducts of LH or Q1 are no less than those between the TRMM and re-
analysis data and between LH and Q1. These differences reflect our
current level of estimating diabatic heating fields: we may get some
basic properties of the heating field (e.g., longitudinal locations of
maxima) correct, but there are many details with large uncertainties.
These uncertainties should by no means stop us from cautiously using
the currently available heating products to provide as much informa-
tion as they may credibly provide.

4.2. Helping in the development of microphysics (MP) schemes

CRMs with advanced microphysical schemes have been used to
study the interactions between aerosol, cloud and precipitation pro-
cesses at high resolution. These processes play a critical role in the
global water and energy cycle. Validation of CRMs with observational
databases is important both to ascertain the fidelity of the outputs and
to improve the models.

The interest on this topic lies in that there are still many un-
certainties associated with various microphysics schemes. In part, this
reflects the fact that microphysical processes cannot always be mea-
sured (or observed) directly. Herein cloud properties, which can be

Fig. 9. A comparison of latent heat (LH) retrieval from (a) Goddard
Convective-Stratiform Heating (CSH) algorithm, (b) Spectral Latent
Heating (SLH) algorithm, (c) Goddard Trained Radiometer (TRAIN)
algorithm and observations: ERA-I Q1 mean, CFSR LH mean and
JRA25 Q1 mean. The good performances illustrate the usefulness of
observations to improve the physics within climate models.
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estimated, have been used to validate model results.
The spectral bin microphysical (SBM) schemes represent the most

sophisticated representations of microphysical processes. They gen-
erally perform better in simulating realistic cloud properties and surface
precipitation compared with bulk microphysical schemes (Li et al.,
2010). SBM schemes have helped to improve the bulk scheme (Lang
et al., 2014; Tao et al., 2016a, also RAMS microphysics used bin scheme
to parameterize their cloud activation).

However useful, SBM schemes are not perfect. For example, in
Fig. 10 we show nine years of TRMM PR and 85 GHz TMI observations
of squall systems during late spring/early summer over the central US
compared against a SBM simulated squall line case (PRESTORM cam-
paign of 1985; Li et al., 2010). The figure shows improvements of a
spectral bin microphysical scheme using long-term TRMM satellite
observations (fully described in Li et al. (2010)). The columns are for
three different instruments: the ground-based C-band radar (first
column), the TRMM Precipitation Radar (second column), and the
TRMM microwave imager at 85 GHz (third column). Note that the
ground-based radar refers to the same case as the model simulation,
whereas TRMM PR and TMI are a 9-year composite of TRMM ob-
servations at the same location (the Southern Great Plains) and period
(late spring/early summer).

Comparisons against a surface C-band radar (first column) and the
TRMM PR radar (second column) show an over estimation of radar
reflectivity in the original scheme (second row). To improve the si-
mulated radar reflectivity profiles, the temperature dependence of the
collection efficiency between ice-phase particles, especially those of the
plate-type, was modified. This improvement reduced the coalescence of
various ice-phase particles and produced smaller aggregates, resulting
in better radar CFADs comparisons in the stratiform region, as shown in
the third row. Note that the SBM MP scheme is more direct (and rea-
listic) than the bulk MP parameterizations used in GCMs. Uncertainties
in these can be expected to be larger.

With the increase of computer power, one of the fastest develop-
ments in the modeling community is the high-resolution global cloud-
resolving models (G-CRM). The spatial resolutions of these global

models are rapidly approaching those of the traditional CRMs and thus
may soon replace traditional limited-area Regional Climate Models
(RCMs), which by their nature present several limitations.

In spite of the demonstrated past ability of RCMs to derive cli-
matologies suitable for geographical applications (Tapiador et al.,
2011), and of existing efforts to coordinate RCMs ensembles at regional
scale (such as CORDEX) escalating computing resources are making
RCMs redundant as coupled GCMs and G-CRMs can now be run at high
spatial and temporal resolutions. Besides, there are strong conceptual
reasons that favor global modeling and variable-resolution, convection-
permitting models such as COSMO (cfr. Nuissier et al., 2016), namely
RCM issues in providing correct large-scale atmospheric circulation
across a region (Trenberth, 2007); and the critical dependence on the
type of driving data, the climate variable, and the region used (Di Luca
et al., 2016). Moreover, some RCMs perform poorly (correlation −0.2)
in describing key hydrological variables such as the dependence be-
tween the number of snowfall days and temperature (Pons et al., 2016),
and in modeling evaporation/precipitation feedbacks (Lucarini et al.,
2007) raising serious concerns about its use to inform policies.

To conclude this section, it is worth mentioning that a prospective
NASA satellite mission called the Cloud and Precipitation Processes
Mission (or CaPPM) is currently being proposed. Such a mission could
provide global estimations of cloud and precipitation properties, which
are needed to evaluate and improve dynamical and microphysical
parameterizations, and the feedbacks between them in both CRMs and
global G-CRM.

4.3. The role of ground validation (GV) campaigns

On one hand, CRMs provide simulated 4D data sets for improving
the performances of rainfall, snowfall and LH retrieval algorithms. On
the other hand, CRMs (and G-CRMs) need to be validated and improved
by observations. To leverage resources, ground validation (GV) sites are
set. These are intended to collect high quality, detailed information and
data from several sources during the periods of interest. They are a third
way of improving GCM physics.

Fig. 10. An example of the improvements and sensitivity of a
spectral bin microphysical scheme using observations. The top
row is the observations; the middle row is the original SBM
simulations; the third row is the improved SBM simulations by
modifying the size threshold separating aggregates from
graupel, and the ice crystal collection of cloud droplets. Each
column represents one instrument. The left column is the
surface C-band radar reflectivity CFADs in stratiform region
during the PRESTORM field campaign; the middle column is
the CFADs of the averaged TRMM PR observations for all the
squall cases identified over a 9-year period; the right column is
the distributions of TRMM TMI 85 GHz polarization corrected
brightness temperature for the same cases as the middle
column. Elaborated from Li et al. (2010).
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In addition to collecting datasets conducive to physically validating
GPM precipitation retrieval algorithms, some of their major objectives
include the use of CRMs in precipitation science such as: (1) testing the
fidelity of CRM simulations via intensive statistical comparisons be-
tween simulated and observed cloud properties and LH fields for a
variety of case types, (2) establishing the limits of CRM space-time in-
tegration capabilities for quantitative precipitation estimates, and (3)
supporting the development and refinement of physically-based GMI
(GPM Microwave Imager), DPR and DPR-GMI combined retrieval al-
gorithms using ground-based GPM GV Ku-Ka band radar and CRM si-
mulations. Both GCE (Tao et al., 2014) and NU-WRF (Peters-Lidard
et al., 2015) were used for GPM GV campaigns in real time forecasts
(Tao et al., 2013; Wu et al., 2016) and for validating and improving the
performance of model simulations (Shi et al., 2010; Iguchi et al., 2012a,
2014).

Fig. 11 exemplifies the need of such exercises to improve climate
models. It shows a case that used GPM GV to validate and improve the
performance of simulating snow events during of the GV field campaign
(C3VP). The upper part of the figure shows horizontal distribution of
vertically maximum C-band radar reflectivity (in dB) over an area be-
tween the Georgian Bay of Lake Huron and Lake Ontario at 1200 UTC
on January 20, 2007 derived from King-City radar measurements
(right) and simulated by the WRF-SBM and Goddard Satellite Data Si-
mulator Unit (G-SDSU; left).

The G-SDSU (Matsui et al., 2014) computes satellite-consistent ra-
diances or backscattering signals from simulated atmospheric profiles
and condensates consistent with the microphysics. Fig. 11 shows how a
band of high reflectivity forming from the south edge of the Georgian
Bay and extending to Lake Ontario side. This band was due to a
snowstorm formed by the interaction between cold dry air blowing over
the lake and heat/moisture supplied from the relatively warm water
surface of the lake (lake-effect snowstorm). The lower part of the figure
shows the scatter plot diagrams between airborne-instrument-based
bulk density (vertical axis) and bulk effective radius (horizontal axis) of
snow particles sampled in the lake-effect snowstorm case. The left panel
shows the scatter plot derived from actual aircraft measurements on the
day (red dots) and those simulated in the two simulations of the WRF-

SBM, i.e. the control run including snow riming effects (blue dots) and a
test run excluding snow riming effects (green dots); both control and
test runs employed the Mellor-Yamada-Janjic PBL (Planetary Boundary
Layer) scheme. The right panel shows the scatter plots simulated in a
WRF-SBM run employing Medium Range Forecast PBL scheme (green
dots) as well as that from the aircraft measurements (red dots).

The broad distribution of the red dots in vertical directions indicates
that the snowstorm is composed of non-rimed low-density and rimed
dense snow particles. The WRF-SBM control run (blue dots) was not
able to simulate non-rimed low-density particles included in the mea-
surement plots. This bias is related to the strength of heat/moisture
fluxes from the lake surface through the PBL process to form the lake-
effect snowstorm.

The existence of the relationship between the riming process and
the PBL process is demonstrated by results of the sensitivity test em-
ploying the different PBL scheme (green dots in the left panel). Once
again, the case illustrates the many nuances in using observations to
validate and improve climate models.

These exercises illustrate not only the challenges faced while vali-
dating climate models with observations, but also the potential and
usefulness of such endeavors. The examples are numerous. Thus for
instance, and regarding just another component of the hydrological
cycle, Lin (2014) illustrated the value of the estimates of subgrid-scale
humidity variability to improve the representation of clouds in GCMs.

5. Discussion: On the need of quality control (QC) standards for
climate model validation

As seen above, validating precipitation estimates from climate
models requires a good knowledge of the details of the observational
databases in terms of their limitations, applicability and uncertainties.
In order to make such comparisons as transparent as possible, and to
drive model improvements in models using a physical approach instead
of relying on statistical tuning, it is necessary to establish a set of well-
defined protocols and procedures. These have to be objective, trans-
parent, traceable and easy to apply for everyone involved in this
emerging field.

Fig. 11. (top) Horizontal distribution of vertically maximum C-
band radar reflectivity (dB) at 1200 UTC on January 20, 2007
derived from King-City radar measurements (upper left) and
simulated using WRF-SBM and G-SDSU (upper right). (bottom)
Scatter plot diagrams between airborne-instrument-based bulk
density (vertical axis) and bulk effective radius (horizontal
axis) of snow particles sampled in the lake-effect snowstorm
case; the plots are derived from aircraft measurements (red
dots) and those simulated in the three types simulations for
WRF-SBM, i.e. the control run including snow riming effects
(blue dots), a test run excluding snow riming effects (green dots
on lower-left side), and a run employing Medium Range
Forecast PBL scheme in place of the Mellor-Yamada-Janjic PBL
scheme (green dots on lower-right side). From Iguchi et al.,
2012b. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
article.)
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Besides, the use of climate models for a variety of societal needs
such as dam design, urban water management and actuary activities,
has motivated the development of quality criteria so that final users, as
well as scientists, are fully informed of the capabilities and limitations
of the products.

Both precipitation databases and outputs from climate models
should be considered within quality control (QC) standards. This is an
increasingly pressing requirement as climate becomes more and more
interweaved with activities of mitigation and adaptation to global
warming. The public and the decision makers demand that the science
behind policies is traceable, transparent and auditable.

A note on terminology is in order as the meaning of ‘quality’ differs
between communities. In industry ‘quality’ is precisely defined by the
quality assurance (QA) concept. The word is not addressed to the in-
trinsic value of the product but to ‘providing confidence that quality
requirements will be fulfilled’ (e.g., ISO 9000). Thus, QA implies not
only that the product is suited for the specific purpose it was built (a
data set or a climate model in our case) but also that the product has
been created following a well-defined set of rules and methods than
builds confidence in the whole production process. QA procedures are
designed to minimize errors and mistakes, setting double-blind eva-
luations, sanity checks and providing a traceable flow of the several
stages of the process of generating the product. It is worth clarifying
that passing QA does not imply a good performance of the product. All
it means is that the product conforms to standards. Another issue worth
mentioning here is the topic of convergence. Convergence is not in-
trinsically a good estimate of observational product or model perfor-
mance since all the developers are equally aware of the range of sen-
sible values for their product and model outputs.

To achieve a QA-standard each step of the production process has to
be clearly defined and subject to auditing. This is not a problem for
most merged precipitation data sets since these are carefully designed
products whose science can be traced back to an Algorithm Theoretical
Basis Document (ATBD). The ATBDs are the cornerstone of the con-
fidence in merged precipitation data sets, in the same way that meta-
data and technical notes perform for pure observational data sets. They
provide the rationale of the many decisions taken over the process of
developing the product, and allow users to trace back each step, also
permitting duplication of the product by another party.

Reputable climate models also have the equivalent to the ATBD in
form of model documentation describing the physics of the dynamical
core, the numerical methods employed, the parameterizations, and the
empirical choices used to fine-tune the model. A numerical model
lacking such information can be considered ‘in house’, ‘internal code’ or
‘research code’ but ought not be used to inform public policies or to
derive consensus conclusions such as those of the IPCC.

Documentation, however, is just a first step for building confidence
in data sets and models. Additional requirements can be proposed to re-
inforce credibility. Table 2 gathers three tiers of those possible re-
quirements divided into basic, extended and full.

The basic requirements are very simple. In addition to being
documented, the products (databases and models) should have been
described in scientific journals. The standard criteria for quality here is
peer-review and indexing such as in Journal Citation Reports (JCR).
Journals in the top of the categories are obviously more credible than
those in the bottom, but as a basic requirement, publication suffices. It
is important however that the model or the algorithm is fully described:
cases in which the model is used with others and provides similar
performances are not enough. The algorithm or the modeling strategy
has to be submitted to public scrutiny in order to evaluate the applic-
ability of the product for a certain application.

The second basic requirement refers to more in-depth scientific
discussion. Proprietary systems and ‘in house’ algorithms are useful for
preliminary climate research but can provide only a minimum con-
fidence until the data are public and can be confronted into the peer-
review and post-publication processes. Algorithms and models falling
under the ‘basic requirements’ tag indicate little more than the ex-
istence of the product, but the tier is nonetheless relevant as some cli-
mate models and data sets do not even satisfy this simple specification.

The extended level of confidence includes more requirements.
Extended confidence is tied to how the product compares with others.
Data or models yielding radically different results from similar pro-
ducts, or models just replicating the annual cycle should be taken with
caution. Replicability is one of the cornerstones of science. Within this
tier, results from case studies are a plus as they allow evaluating per-
formances that can remain hidden to statistical comparisons.

Full confidence includes additional, stronger requirements. The
probability of bugs in the code decreases exponentially with the
number of eyes scrutinizing the code. A community of users also re-
duces to almost zero the chance of malpractice, incompetence or fraud.
It is therefore sensible that proprietary models whose source code no
one has ever seen and which are used by just a few people in the world,
are not put on the same tier as another used by a community of hun-
dreds of developers and whose code is downloadable for anyone to
check.

To achieve full confidence, it is also important to be able to evaluate
the degree of novelty of the product. Some allegedly independent or
new models are actually ‘avatars’ of a well-known public code which
has been tailored. There is nothing wrong in these practices as long as
there is a reason for doing so and the procedure is transparent.
However, using such models within an ensemble may not contribute
added value to the experiment because of the lack of independence and

Table 2
Basic, extended and full set of requirements of data and climate models involved in validation.

Tier Requirements

Validation data Climate models

Tier 1: Basic confidence ATBD available Full technical documentation of the model core is available (incl. dynamical core,
numerical methods, parameterization, and empirical coefficients used for tuning)

Algorithms or data set creation methodology has been described
in peer-reviewed literature

The model has been fully described in a peer-reviewed journal

Plus
Tier 2: Extended

confidence
Products are publicly and freely available Outputs are publicly and freely available
There are published comparisons with other data set Aggregated results compare reasonably well with pre-existing models
Case studies are available Benchmarking and case studies are available

Plus
Tier 3: Full confidence The code for the algorithms is publicly available/replicable Source code is publicly available

The results of the simulations are fully replicable by a third party
The data set has been successfully used by several independent
groups and the results have been published in reputable journals

The model has been validated by several independent groups and the results have
been published in reputable journals
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diversity, a quality very much sought when building an ensemble. Just
reporting the parameterization type is not enough: most para-
meterizations contain a choice of values for key variables. Since in the
development phase models are evaluated in specific locations, no one
can assure that the parameterization would work in another place.
Besides, the same parameterization can be wired in the model in a
different way depending on programming practices or computing re-
sources, and it is always helpful to have the code examined by a fresh
pair of eyes. Again, the more people have gone through thousands of
lines of code, the better for the community.

The top requirements for quality assurance are in the line of the
outputs or products having been used and replicated by a third party. A
model used by several independent groups and whose results are rou-
tinely published in top journals cannot be in the same category as other
models developed by a few people and used just by them. Ideally, the
validation should be as independent as possible; preferably by another
group. Consequently, the QA for those models must be clearly different.
At this point, it is worth mentioning that once science ventures into
providing input for policies only models with the higher confidence
should be used.

Examples of full confidence level data sets using those criteria
would include the GPCP database, on the data side; and the CESM on
the model side. CESM satisfies all the requirements described above.
Many versions of the code are routinely run in several independent
research centers, and there is a community improving the model and
reporting results, study cases and the unavoidable bugs featuring in
complex and large projects.

The same applies to databases such as GPCP, which anyone with
adequate technological resources can replicate, and that have been
examined by a large community. Such dissemination builds up con-
fidence in the data to be the best possible at the time, and therefore
suitable for been used to derive public policies.

6. Conclusions

The validation of climate models is critical to improve the physics of
such tools and to gauge its ability to provide useful input to decision
makers. However, observational, reference data sets present a series of
uncertainties and limitations. Awareness of those is a must to avoid
pitfalls and extract wrong or unsubstantiated advice on the spatial and
temporal distribution of precipitation. Also, there is a lack of standards,
best practices and quality assurance methods for both observation data
sets and models.

This paper has elaborated over both aspects. Table 3 gathers the
central points that require attention in the task of validating pre-
cipitation outputs from climate models.

A main conclusion is that since there are no “perfect” data sets that
are optimal in both sampling and retrieval error, it would be always
desired to use multiple precipitation products as the reference to verify
model simulations so the audience can grasp the magnitude of mea-
surement uncertainties. The IPCC AR5 acknowledgment of large ob-
servational uncertainties in precipitation observations for climate
model validation still applies, and the more we discover about pre-
cipitation physics the more questions arise. Comparisons considering
the uncertainties and limitations of the reference data are rare and
cumbersome, but nonetheless necessary.

Another major conclusion is that there is the need for setting up
quality standards to ensure products are judiciously used. Simple
schemes such as the three-tiers scheme we propose can help to under-
stand how suited for a specific application a model or data set is. Thus, a
regional precipitation data set might be helpful in the model develop-
ment stages but may not be that useful for extracting conclusions at
global scale over a full climatological period. Here, topics such as the
habit of validating at a spatial or temporal resolution and then claim
performances at better resolutions are highly relevant and deserve full
attention.

As of 2017, it is safe to state that the future of climate modeling
points towards high-resolution, coupled, convection-permitting, full-
physics GCMs projects lead by large institutions. Modeling efforts are
directed towards variable resolution GCMs and HR-GCMs.
Consequently, validation efforts should be directed towards improving
the physics sustaining such models, and here global precipitation da-
tabases can play a determinant role. Physical validation, more complex
and costly than direct validation, and often involving setting up

Table 3
A checklist of known issues that must be considered in the field of validation of pre-
cipitation outputs from climate models.

1. Rain gauges provide pointwise estimates that may be not fully representative of the
area, especially for large areas with a few observations (e.g., the Amazon basin).

2. Rain gauges have known technical limitations and biases and the spatial
distribution/length record of the instruments is highly variable.

3. Ground radars are characterized by many sources of uncertainty (i.e., beam
blockage, attenuation) that should be taken into account.

4. Precipitation (solid, liquid and mixed phase) has a large spatial and temporal
variability making its validation both challenging and important using
precipitation datasets in model validation.

5. Satellite estimates are indirect and have limited temporal sampling, and this
should be considered in the comparisons.

6. Satellites estimates over land, coast and ocean are derived using different methods
and assumptions.

7. Merged precipitation databases are not intended for trend analyses as sensors drift
and/or are available over limited time spans.

8. Many of the techniques used in Level-2 products are built upon Bayesian estimates
(i.e., they require a prior estimate).

9. The quality of Level-3 precipitation products is driven by microwave observations
and therefore is dependent on their availability and quality.

10. The error characteristics resulting from the merging of disparate datasets are not
well known.

11. All climate models are tuned to observations, and this must be considered for
ensuring a truly independent validation.

12. Global measurements of microphysics are important to avoid overfitting models
to empirical parameters.

13. There are known uncertainties in the estimation of diabatic heating fields that
affect how models represent some precipitation processes.

14. Model outputs that have been bias-corrected or that are the results of model
output statistic techniques cannot be validated.

15. Series derived from GCM-driven RCMs cannot be directly compared with time
series of observations.

16. High-resolution global cloud-resolving models (G-CRM) are becoming best suited
than RCMs to inform policies and advance our knowledge of the physics of
precipitation.

17. Parameterizations can only be validated with data not used in their development
and tuning.

18. ‘Scope principle’: a model cannot claim performances at better resolutions that
those at which it has been validated.

19. Blending methods in deriving global precipitation products involves subtleties
than must be considered in any validation process.

20. There are significant latitudinal differences in the satellite and ground based
estimates in terms of known biases and uncertainties.

21. Parameters and techniques used in the estimation process using satellites and rain
gauges may not be universally applicable, both in space and time.

22. Ground validation campaigns are essential for improving the representation of
precipitation in models.

23. End-to-end characteristics of the satellite-based retrieval process are not yet fully
understood.

24. There is less agreement among satellite products in trends and variability at
global scale than in regional variability.

25. The precise measurement of shallow and very light precipitation still represents a
scientific challenge.

26. While precipitation is a key variable to validate models, there is not agreement in
the reference to be compared with. More research and targeted observations are
required to fill this gap.

27. Public auditing of model code and precipitation databases algorithms is required
if models are used for policy-making and societal applications other than pure
research.

28. Every aspect of model and database development should be subject to QC
methods and be fully traceable, transparent and auditable.

29. Models must be independently validated by scientists not involved in their
development or belonging to the same research network.

30. Users should be made fully aware of the confidence level that can be attributed to
model outputs and observational databases.
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dedicated ground validation campaigns are important to advance the
field.

Until the end-to-end characteristics of the satellite-based precipita-
tion retrieval process are fully understood and parameterized in a dy-
namic fashion (dynamic since the overall errors are aggregated from
always-changing satellite orbital patterns), it will be difficult to quan-
titatively compare GCM models and satellite precipitation data beyond
more than daily precipitation totals, threshold scores and precipitation
patterns. The future lies in extracting the information content within
the multiple active and PMW data, to assess physical processes (cfr.
Michaelides et al., 2015) interior to the GCM models (Skofronick-
Jackson et al., 2017).

Validation of climate models is full of subtleties and details that
quite often are only obvious to data set developers. Thus, for instance it
is premature to use global scale trends and variations from observations
to validate climate models as there is still some disagreement among
the satellite products themselves. Given the extent of tuning that
models have there is a danger of overfitting parameters to observations
that are known to present its own uncertainties, biases and limitations.
The application of those tuned models to a future climate under other
set of emissions and forcings may not yield robust conclusions and thus
be counterproductive.

A major reason for being prescriptive in the area of climate model
validation and verification is reinforcing accountability. From the mo-
ment science is used to inform policies it can become political and
therefore subject to increased public scrutiny. That means increased
levels of quality assurance. Therein, awareness of the specifics of model
tuning is critical to further societal advance. In an era of information,
transparency and public responsibility, it is important to base policies
on nothing but the best information. Both modelers and precipitation
data set producers should make their codes as public as possible so
everyone can check the assumptions made, evaluate the performances,
and examine the empirical assumptions. It would be also advisable
requiring that validation is done independently from model developers.

Finally, it is worth mentioning the validation must be performed
with independent data not previously used for model development.
While this may seem obvious, the fact is too often forgotten. A bias-
corrected model cannot be fairly validated. On this respect, ongoing
missions such as GPM provide a wealth of continuously updated in-
formation and planned missions such as CaPPM can serve to test hy-
potheses in the extremely demanding task of precisely quantifying
precipitation over the globe in 4D.
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